Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
app = FastAPI() | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
class ChatRequest(BaseModel): | |
prompt: str | |
history: list | |
def format_prompt(message, history): | |
system_prompt = "You are Mistral, a gentle and a useful AI assistant. My input is " | |
prompt = "<s>" | |
prompt += f"[INST] {system_prompt} [/INST]" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
response = client.text_generation(formatted_prompt, **generate_kwargs) | |
return response.generated_text | |
async def chat(request: ChatRequest): | |
return {"response": generate(request.prompt, request.history)} | |