pdfchat / app.py
ogegadavis254's picture
Update app.py
1110d7a verified
raw
history blame
3.7 kB
import streamlit as st
import requests
import os
import json
from dotenv import load_dotenv
import PyPDF2
import io
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub
load_dotenv()
# Initialize session state variables
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
def reset_conversation():
st.session_state.conversation = None
st.session_state.chat_history = []
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PyPDF2.PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = HuggingFaceEmbeddings()
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
# Streamlit application
st.set_page_config(page_title="Chat with your PDFs", page_icon=":books:")
st.header("Chat with your PDFs :books:")
user_template = '<div style="background-color: #e6f3ff; padding: 10px; border-radius: 5px; margin-bottom: 10px;"><strong>Human:</strong> {{MSG}}</div>'
bot_template = '<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; margin-bottom: 10px;"><strong>AI:</strong> {{MSG}}</div>'
# Sidebar
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# Get PDF text
raw_text = get_pdf_text(pdf_docs)
# Get the text chunks
text_chunks = get_text_chunks(raw_text)
# Create vector store
vectorstore = get_vectorstore(text_chunks)
# Create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
st.button('Reset Chat', on_click=reset_conversation)
# Main chat interface
if st.session_state.conversation is None:
st.write("Please upload PDF documents and click 'Process' to start chatting.")
else:
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)