Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
import json | |
from dotenv import load_dotenv | |
import PyPDF2 | |
import io | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.llms import HuggingFaceHub | |
load_dotenv() | |
# Initialize session state variables | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
def reset_conversation(): | |
st.session_state.conversation = None | |
st.session_state.chat_history = [] | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PyPDF2.PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = HuggingFaceEmbeddings() | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
# Streamlit application | |
st.set_page_config(page_title="Chat with your PDFs", page_icon=":books:") | |
st.header("Chat with your PDFs :books:") | |
user_template = '<div style="background-color: #e6f3ff; padding: 10px; border-radius: 5px; margin-bottom: 10px;"><strong>Human:</strong> {{MSG}}</div>' | |
bot_template = '<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; margin-bottom: 10px;"><strong>AI:</strong> {{MSG}}</div>' | |
# Sidebar | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# Get PDF text | |
raw_text = get_pdf_text(pdf_docs) | |
# Get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# Create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# Create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
st.button('Reset Chat', on_click=reset_conversation) | |
# Main chat interface | |
if st.session_state.conversation is None: | |
st.write("Please upload PDF documents and click 'Process' to start chatting.") | |
else: | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) |