Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
import json | |
from dotenv import load_dotenv | |
import PyPDF2 | |
import io | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
load_dotenv() | |
# Initialize session state variables | |
if "vectorstore" not in st.session_state: | |
st.session_state.vectorstore = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
def reset_conversation(): | |
st.session_state.vectorstore = None | |
st.session_state.chat_history = [] | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PyPDF2.PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = HuggingFaceEmbeddings() | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_together_response(prompt, history): | |
url = "https://api.together.xyz/v1/chat/completions" | |
model_link = "NousResearch/Nous-Hermes-2-Yi-34B" | |
messages = [{"role": "system", "content": "You are an AI assistant that helps users understand the content of their PDFs. Provide concise and relevant answers based on the information in the documents."}] | |
for human, ai in history: | |
messages.append({"role": "user", "content": human}) | |
messages.append({"role": "assistant", "content": ai}) | |
messages.append({"role": "user", "content": prompt}) | |
payload = { | |
"model": model_link, | |
"messages": messages, | |
"temperature": 0.7, | |
"top_p": 0.95, | |
"top_k": 50, | |
"repetition_penalty": 1, | |
"max_tokens": 1024 | |
} | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"Authorization": f"Bearer {os.getenv('TOGETHER_API_KEY')}" | |
} | |
try: | |
response = requests.post(url, json=payload, headers=headers) | |
response.raise_for_status() | |
return response.json()['choices'][0]['message']['content'] | |
except requests.exceptions.RequestException as e: | |
return f"Error: {str(e)}" | |
def handle_userinput(user_question): | |
if st.session_state.vectorstore: | |
docs = st.session_state.vectorstore.similarity_search(user_question) | |
context = "\n".join([doc.page_content for doc in docs]) | |
prompt = f"Context from PDFs:\n{context}\n\nQuestion: {user_question}\nAnswer:" | |
response = get_together_response(prompt, st.session_state.chat_history) | |
st.session_state.chat_history.append((user_question, response)) | |
return response | |
else: | |
return "Please upload and process PDF documents first." | |
# Streamlit application | |
st.set_page_config(page_title="Chat with your PDFs", page_icon=":books:") | |
st.header("Chat with your PDFs :books:") | |
# Sidebar | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# Get PDF text | |
raw_text = get_pdf_text(pdf_docs) | |
# Get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# Create vector store | |
st.session_state.vectorstore = get_vectorstore(text_chunks) | |
st.success("PDFs processed successfully!") | |
st.button('Reset Chat', on_click=reset_conversation) | |
# Main chat interface | |
if st.session_state.vectorstore is None: | |
st.write("Please upload PDF documents and click 'Process' to start chatting.") | |
else: | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
response = handle_userinput(user_question) | |
st.write("Human: " + user_question) | |
st.write("AI: " + response) | |
# Display chat history | |
st.subheader("Chat History") | |
for human, ai in st.session_state.chat_history: | |
st.write("Human: " + human) | |
st.write("AI: " + ai) | |
st.write("---") |