File size: 11,425 Bytes
9768291 a85ad22 9768291 a85ad22 9768291 f04b8e0 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 a85ad22 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec c907f10 9768291 f83d96d ad54bec 9768291 a85ad22 9768291 ad54bec 9768291 ad54bec 9768291 ad54bec 9768291 f83d96d 9768291 a85ad22 9768291 ad54bec 9768291 a85ad22 9768291 ad54bec 9768291 f83d96d a85ad22 24aa3b8 a85ad22 ad54bec a85ad22 9768291 a85ad22 9768291 a85ad22 9768291 a85ad22 f83d96d a85ad22 ad54bec a85ad22 9768291 c907f10 b655efd c51989f a85ad22 ad54bec c907f10 9768291 a85ad22 9768291 ad54bec 9768291 8905bb5 9768291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import base64
import datetime
import gradio as gr
import pandas as pd
import pytz
import plotly.graph_objects as go
import matplotlib.pyplot as plt
from PIL import Image
from io import BytesIO
# import logging
# import plotly.io as pio
# pio.renderers.default = "browser"
# logger = logging.getLogger(__name__)
# logger.setLevel(logging.INFO)
df = pd.read_csv("herbologist_almanac_checklist_data.csv")
TASKS = [
"task1",
"task2",
"task3",
"task4",
"color1",
"color2",
"color3",
"color4",
"color5",
"color6",
]
PLANTS = list(df["plant"].unique())
def bin_ls2base64(ls):
# 将二进制列表转换为base64字符串
binary_str = "".join(str(n) for n in ls)
# decimal_int = int(bin_str, 2)
byte_str = int(binary_str, 2).to_bytes((len(binary_str) + 7) // 8, byteorder="big")
base64_str = base64.b64encode(byte_str).decode("utf-8")
return base64_str
def base64_to_binary(base64_str):
if isinstance(base64_str, str):
# 将base64字符串转换为二进制列表
byte_str = base64.b64decode(base64_str)
binary_str = bin(int.from_bytes(byte_str, byteorder="big"))[2:].zfill(
len(TASKS) * len(PLANTS)
)
# ls = [int(n) for n in binary_str]
return binary_str
else:
raise TypeError(
"Invalid input type. Expected str, got {}".format(type(base64_str))
)
def parse_token(token):
if not token: # 处理空字符串的情况
token = "\x00"
if len(token) > 0:
payload = base64_to_binary(token)
almanac_data: list = [int(n) for n in payload]
# print(len(almanac_data))
parsed_dict = {}
for _, row in df.iterrows():
parsed_dict[row["plant"]] = [almanac_data.pop() for _ in range(len(TASKS))]
return parsed_dict
else:
return parse_token("\x00")
# 定义一个简单的函数,模拟接收DataFrame数据
def process_data(*args):
plot_library = args[-1]
almanac_dict = dict(zip(PLANTS, args[:-1]))
almanac_df = df.filter(items=["plant", "name"] + TASKS)
almanac_bin_ls = []
for pl in PLANTS:
plant_tasks = almanac_dict[pl]
plant_tasks_done = [0 for _ in range(len(TASKS))]
for n, i in enumerate(plant_tasks):
plant_tasks_done[n] = 1
almanac_df.loc[almanac_df["plant"] == pl, TASKS[i]] = "✔"
almanac_bin_ls += plant_tasks_done
almanac_reverse_64 = bin_ls2base64(reversed(almanac_bin_ls))
# logger.info("Generating image!")
return (
(
generate_img_by_plotly(almanac_df.drop(columns=df.columns[0]))
if plot_library == "plotly"
else generate_img_by_matplotlib(almanac_df.drop(columns=df.columns[0]))
),
almanac_reverse_64,
)
def show_checkbox_groups(token):
checklist_inputs = []
parsed_dict = parse_token(token)
for index, row in df.iterrows():
tasks = [
row[col][0].upper() + row[col][1:]
for col in TASKS
if df.notnull().at[index, col]
]
with gr.Row():
checkbox = gr.CheckboxGroup(
tasks,
label=f"{row['name']}",
value=[
tasks[i]
for i, v in enumerate(parsed_dict[row["plant"]])
if v == 1 and df.notnull().at[index, TASKS[i]]
],
type="index",
)
checklist_inputs.append(checkbox)
# logger.info("Rerendering checklist!")
return checklist_inputs
"""使用matplotlib生成图片"""
def wrap_text(text, max_width=20):
"""Manually wrap text based on max_width (character count)"""
wrapped_lines = []
words = text.split(" ")
line = ""
for word in words:
if len(line) + len(word) + 1 <= max_width:
line += word + " "
else:
wrapped_lines.append(line.strip())
line = word + " "
wrapped_lines.append(line.strip())
return "\n".join(wrapped_lines)
def generate_img_by_matplotlib(df):
fig, ax = plt.subplots(
figsize=(12, 16)
) # Adjust the figure size for better readability
ax.axis("off") # Turn off the axis
# Create a table with a light grey background for the header
table = ax.table(
cellText=df.values,
colLabels=df.columns,
loc="center",
colColours=["#f2f2f2"] * len(df.columns),
colWidths=[w / len(df.columns) for w in [1] + [2] * 4 + [1] * 6],
)
table.auto_set_font_size(False)
table.set_fontsize(10)
# Apply text wrapping and center alignment to non-header cells
for (row, col), cell in table.get_celld().items():
if cell.get_text().get_text() == "nan":
cell.set_text_props(text="", ha="center")
if row == 0:
cell.set_text_props(
weight="bold", ha="center"
) # Bold and center-align header text
if col == 0:
text = cell.get_text().get_text()
wrapped_text = wrap_text(text, 9)
cell.set_text_props(text=wrapped_text, ha="center", linespacing=1)
else:
text = cell.get_text().get_text()
wrapped_text = wrap_text(text)
cell.set_text_props(
text=wrapped_text,
ha="center",
fontsize=10,
linespacing=1,
) # Enable text wrapping and center-align
# Manually scale table if needed for better readability with wrapped text
table.scale(1, 4) # Adjust row height
# Ensure the layout is adjusted properly
plt.tight_layout(pad=0.5) # Increase padding slightly
# Save the figure to a bytes buffer
buffer = BytesIO()
fig.savefig(
buffer, format="png", pad_inches=0.2
) # Adjust padding around the figure
plt.close(fig) # Close the figure to free up memory
buffer.seek(0)
image = Image.open(buffer)
# logger.info("Image generated by matplotlib successfully!")
return image
"""使用plotly生成图片"""
def color_mapping(color):
color_hex = {
"turquoise": "#28b6aa",
"chartreuse": "#dcde82",
"red": "#981c05",
"yellow": "#f4ca3a",
"pink": "#fd8d9b",
"blue": "#4194bd",
"white": "#ffffff",
"black": "#b7b7b7",
"orange": "#d97413",
"purple": "#8a659a",
"viridian": "#a1c42a",
}
# if color == "" or color == "✔":
# return "white"
return color_hex.get(color, "white")
def styled_header(header):
return dict(
values=[[f"<b>{attr.upper()}</b>"] for attr in header],
line_color="darkslategray",
fill_color="royalblue",
align=["center"],
font=dict(color="white", size=10),
# height=40
)
def styled_cells(cells):
return dict(
values=cells,
line_color="darkslategray",
fill_color=["lavender", "white", "white", "white", "white"]
+ [[color_mapping(str(el)) for el in col] for col in cells[5:]],
align="center",
font_size=10,
height=30,
)
def handle_element(el):
emoji_mapping = {
"harvest": "🌱",
"light": "🌞",
"moisture": "💧",
"mood": "💗",
"sell": "💲",
"collect": "🖐️",
"hygiene": "🧽",
"pest": "🐛",
"overgrowth": "🌿",
"show": "👩🏻🌾",
}
if isinstance(el, str):
if el == "✔":
return "✅"
for cond in emoji_mapping.keys():
if cond in el.lower():
new_text = el + emoji_mapping[cond]
return new_text
return el
def generate_img_by_plotly(df):
df.fillna("", inplace=True)
cells_values = [df[col].to_list() for col in df.columns]
header_values = list(df.columns)
# add emoji
cells_values = [[handle_element(el) for el in col] for col in cells_values]
# Create the table figure
fig = go.Figure(
data=[
go.Table(
header=styled_header(header_values),
cells=styled_cells(cells_values),
columnwidth=[80, 160, 160, 160, 160, 80, 80, 80, 80, 80, 80],
)
]
)
fig.add_annotation(
text=f'Herbology Almanac Checklist Generated on(GMT): {datetime.datetime.now(tz=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")}',
xref="paper",
yref="paper",
x=0.5,
y=0,
showarrow=False,
)
fig.update_layout(
width=1200,
height=1200,
margin=dict(l=20, r=20, t=20, b=20),
# title_text=f'Herbology Almanac Checklist Generated on(GMT): {datetime.datetime.now(tz=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")}',
# annotations=[
# dict(
# text=f"Generated on(GMT): {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}",
# xref="paper",
# yref="paper",
# x=0.5, # 水平居中
# y=-0.1, # 距离图表底部的位置
# showarrow=False,
# font=dict(size=10),
# )
# ],
)
buffer = BytesIO()
fig.write_image(buffer, format="png")
buffer.seek(0)
image = Image.open(buffer)
# logger.info("Image generated by plotly successfully!")
return image
with gr.Blocks() as app:
gr.Markdown(
"""
<center><font size=8>👩🏻🌾Herbology Almanac Checklist Generator📝</font></center>
This is a simple web app that generates an almanac checklist for your plants.
"""
)
gr.Markdown(
"""
# RECOVERY TOKEN
"""
)
recovery_token = gr.Textbox(
value="",
label="Recovery Token",
info="Save this token or paste your saved one here",
placeholder="Keep this token to restore your previous input".upper(),
interactive=True,
)
gr.Markdown(
"""
# YOUR RESEARCH TASKS
"""
)
checklist_inputs = show_checkbox_groups(recovery_token.value)
gr.Markdown(
"""
# IMAGE STYLE
"""
)
plot_library = gr.Radio(
["plotly", "matplotlib"],
label="Plot Library",
value="plotly",
info="Choose your plot library",
)
submit_button = gr.Button("Generate Image and Token")
# df_out = gr.Dataframe(label="Output Dataframe", interactive=False)
generated_img = gr.Image(label="Generated Image", format="png", type="pil")
logs = gr.Markdown(
"""
# CHANGELOG
- 2024/08/31: Initial release
- 2024/09/03: Fix a mistake in the tasks of mimbulus
- 2024/09/04: Correct Radiant count for water hyacinth
- 2024/09/05: Support image generated by plotly
- 2024/09/13: Update Water Lily tasks and color options
"""
)
submit_button.click(
process_data,
inputs=checklist_inputs + [plot_library],
outputs=[generated_img, recovery_token],
)
recovery_token.change(
show_checkbox_groups,
inputs=[recovery_token],
outputs=checklist_inputs,
)
# generate_button.click(
# generate_img,
# inputs=[df_out],
# outputs=[generated_img],
# )
app.queue()
app.launch()
|