File size: 7,451 Bytes
9768291 c907f10 9768291 c907f10 9768291 8905bb5 9768291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import base64
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
from io import BytesIO
df = pd.read_csv("herbologist_almanac_checklist_data.csv")
columns_with_tasks = [
"task1",
"task2",
"task3",
"task4",
"color1",
"color2",
"color3",
"color4",
"color5",
"color6",
]
PLANTS = list(df["plant"].unique())
# 更改字体设置
# rc("font", family="Arial Unicode MS")
# def decimal2base64(decimal_int):
# # 定义 64 进制字符集
# base64_chars = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
# if decimal_int == 0:
# return "0"
# base64_str = ""
# while decimal_int > 0:
# remainder = decimal_int % 64
# base64_str = base64_chars[remainder] + base64_str
# decimal_int //= 64
# return base64_str
def bin_ls2base64(ls):
# 将二进制列表转换为二进制列表
binary_str = "".join(str(n) for n in ls)
# decimal_int = int(bin_str, 2)
byte_str = int(binary_str, 2).to_bytes((len(binary_str) + 7) // 8, byteorder="big")
base64_str = base64.b64encode(byte_str).decode("utf-8")
return base64_str
def base64_to_binary(base64_str):
if isinstance(base64_str, str):
# 将base64字符串转换为二进制列表
byte_str = base64.b64decode(base64_str)
binary_str = bin(int.from_bytes(byte_str, byteorder="big"))[2:].zfill(
len(columns_with_tasks) * len(PLANTS)
)
# ls = [int(n) for n in binary_str]
return binary_str
def parse_token(token):
try:
if not token: # 处理空字符串的情况
token = "\x00"
if len(token) > 0:
payload = base64_to_binary(token)
almanac_data: list = [int(n) for n in payload]
# print(len(almanac_data))
parsed_dict = {}
for _, row in df.iterrows():
parsed_dict[row["plant"]] = [
almanac_data.pop() for _ in range(len(columns_with_tasks))
]
return parsed_dict
except Exception as e:
print(e)
# 定义一个简单的函数,模拟接收DataFrame数据
def process_data(*args):
almanac_dict = dict(zip(PLANTS, args))
almanac_df = df.filter(items=["plant", "name"] + columns_with_tasks)
almanac_bin_ls = []
for pl in PLANTS:
almanac_inp = almanac_dict[pl]
almanac_bin = [0 for _ in range(len(columns_with_tasks))]
for n in almanac_inp:
almanac_bin[n] = 1
almanac_bin_ls += almanac_bin
for _, i in enumerate(almanac_inp):
almanac_df.loc[almanac_df["plant"] == pl, columns_with_tasks[i]] = "✔"
almanac_reverse_64 = bin_ls2base64(reversed(almanac_bin_ls))
# 这里可以添加处理DataFrame的逻辑
return (
generate_img(almanac_df.drop(columns=df.columns[0])),
almanac_reverse_64,
)
def show_checkbox_groups(token):
checklist_inputs = []
parsed_dict = parse_token(token)
for index, row in df.iterrows():
tasks = [
row[col][0].upper() + row[col][1:]
for col in columns_with_tasks
if df.notnull().at[index, col]
]
with gr.Row():
checkbox = gr.CheckboxGroup(
tasks,
label=f"{row['name']}",
value=[
tasks[i]
for i, v in enumerate(parsed_dict[row["plant"]])
if v == 1 and df.notnull().at[index, columns_with_tasks[i]]
],
type="index",
)
checklist_inputs.append(checkbox)
return checklist_inputs
def wrap_text(text, max_width=20):
"""Manually wrap text based on max_width (character count)"""
wrapped_lines = []
words = text.split(" ")
line = ""
for word in words:
if len(line) + len(word) + 1 <= max_width:
line += word + " "
else:
wrapped_lines.append(line.strip())
line = word + " "
wrapped_lines.append(line.strip())
return "\n".join(wrapped_lines)
def generate_img(df):
fig, ax = plt.subplots(
figsize=(12, 16)
) # Adjust the figure size for better readability
ax.axis("off") # Turn off the axis
# Create a table with a light grey background for the header
table = ax.table(
cellText=df.values,
colLabels=df.columns,
loc="center",
colColours=["#f2f2f2"] * len(df.columns),
colWidths=[w / len(df.columns) for w in [1] + [2] * 4 + [1] * 6],
)
table.auto_set_font_size(False)
table.set_fontsize(10)
# Apply text wrapping and center alignment to non-header cells
for (row, col), cell in table.get_celld().items():
if cell.get_text().get_text() == "nan":
cell.set_text_props(text="", ha="center")
if row == 0:
cell.set_text_props(
weight="bold", ha="center"
) # Bold and center-align header text
if col == 0:
text = cell.get_text().get_text()
wrapped_text = wrap_text(text, 9)
cell.set_text_props(text=wrapped_text, ha="center", linespacing=1)
else:
text = cell.get_text().get_text()
wrapped_text = wrap_text(text)
cell.set_text_props(
text=wrapped_text,
ha="center",
fontsize=10,
linespacing=1,
) # Enable text wrapping and center-align
# Manually scale table if needed for better readability with wrapped text
table.scale(1, 4) # Adjust row height
# Ensure the layout is adjusted properly
plt.tight_layout(pad=0.5) # Increase padding slightly
# Save the figure to a bytes buffer
buffer = BytesIO()
fig.savefig(
buffer, format="png", pad_inches=0.2
) # Adjust padding around the figure
plt.close(fig) # Close the figure to free up memory
buffer.seek(0)
image = Image.open(buffer)
return image
with gr.Blocks() as app:
gr.Markdown(
"""
<center><font size=8>👩🏻🌾Herbology Almanac Checklist Generator📝</font></center>
This is a simple web app that generates an almanac checklist for your plants.
"""
)
recovery_token = gr.Textbox(
value="",
label="Recovery Token",
info="Save this token or paste your saved one here",
placeholder="Keep this token to restore your previous input".upper(),
interactive=True,
)
checklist_inputs = show_checkbox_groups(recovery_token.value)
submit_button = gr.Button("Generate Image and Token")
# df_out = gr.Dataframe(label="Output Dataframe", interactive=False)
generated_img = gr.Image(label="Generated Image", format="png", type="pil")
logs = gr.Markdown(
"""
# CHANGELOG
- 204/08/31: Initial release
- 204/09/03: Add recovery token
"""
)
submit_button.click(
process_data,
inputs=checklist_inputs,
outputs=[generated_img, recovery_token],
)
recovery_token.change(
show_checkbox_groups,
inputs=[recovery_token],
outputs=checklist_inputs,
)
# generate_button.click(
# generate_img,
# inputs=[df_out],
# outputs=[generated_img],
# )
app.queue()
app.launch()
|