import base64 import datetime import gradio as gr import pandas as pd import pytz import plotly.graph_objects as go import matplotlib.pyplot as plt from PIL import Image from io import BytesIO # import logging # import plotly.io as pio # pio.renderers.default = "browser" # logger = logging.getLogger(__name__) # logger.setLevel(logging.INFO) df = pd.read_csv("herbologist_almanac_checklist_data.csv") TASKS = [ "task1", "task2", "task3", "task4", "color1", "color2", "color3", "color4", "color5", "color6", ] PLANTS = list(df["plant"].unique()) def bin_ls2base64(ls): # 将二进制列表转换为base64字符串 binary_str = "".join(str(n) for n in ls) # decimal_int = int(bin_str, 2) byte_str = int(binary_str, 2).to_bytes((len(binary_str) + 7) // 8, byteorder="big") base64_str = base64.b64encode(byte_str).decode("utf-8") return base64_str def base64_to_binary(base64_str): if isinstance(base64_str, str): # 将base64字符串转换为二进制列表 byte_str = base64.b64decode(base64_str) binary_str = bin(int.from_bytes(byte_str, byteorder="big"))[2:].zfill( len(TASKS) * len(PLANTS) ) # ls = [int(n) for n in binary_str] return binary_str else: raise TypeError( "Invalid input type. Expected str, got {}".format(type(base64_str)) ) def parse_token(token): if not token: # 处理空字符串的情况 token = "\x00" if len(token) > 0: payload = base64_to_binary(token) almanac_data: list = [int(n) for n in payload] # print(len(almanac_data)) parsed_dict = {} for _, row in df.iterrows(): parsed_dict[row["plant"]] = [almanac_data.pop() for _ in range(len(TASKS))] return parsed_dict else: return parse_token("\x00") # 定义一个简单的函数,模拟接收DataFrame数据 def process_data(*args): plot_library = args[-1] almanac_dict = dict(zip(PLANTS, args[:-1])) almanac_df = df.filter(items=["plant", "name"] + TASKS) almanac_bin_ls = [] for pl in PLANTS: plant_tasks = almanac_dict[pl] plant_tasks_done = [0 for _ in range(len(TASKS))] for n, i in enumerate(plant_tasks): plant_tasks_done[n] = 1 almanac_df.loc[almanac_df["plant"] == pl, TASKS[i]] = "✔" almanac_bin_ls += plant_tasks_done almanac_reverse_64 = bin_ls2base64(reversed(almanac_bin_ls)) # logger.info("Generating image!") return ( ( generate_img_by_plotly(almanac_df.drop(columns=df.columns[0])) if plot_library == "plotly" else generate_img_by_matplotlib(almanac_df.drop(columns=df.columns[0])) ), almanac_reverse_64, ) def show_checkbox_groups(token): checklist_inputs = [] parsed_dict = parse_token(token) for index, row in df.iterrows(): tasks = [ row[col][0].upper() + row[col][1:] for col in TASKS if df.notnull().at[index, col] ] with gr.Row(): checkbox = gr.CheckboxGroup( tasks, label=f"{row['name']}", value=[ tasks[i] for i, v in enumerate(parsed_dict[row["plant"]]) if v == 1 and df.notnull().at[index, TASKS[i]] ], type="index", ) checklist_inputs.append(checkbox) # logger.info("Rerendering checklist!") return checklist_inputs """使用matplotlib生成图片""" def wrap_text(text, max_width=20): """Manually wrap text based on max_width (character count)""" wrapped_lines = [] words = text.split(" ") line = "" for word in words: if len(line) + len(word) + 1 <= max_width: line += word + " " else: wrapped_lines.append(line.strip()) line = word + " " wrapped_lines.append(line.strip()) return "\n".join(wrapped_lines) def generate_img_by_matplotlib(df): fig, ax = plt.subplots( figsize=(12, 16) ) # Adjust the figure size for better readability ax.axis("off") # Turn off the axis # Create a table with a light grey background for the header table = ax.table( cellText=df.values, colLabels=df.columns, loc="center", colColours=["#f2f2f2"] * len(df.columns), colWidths=[w / len(df.columns) for w in [1] + [2] * 4 + [1] * 6], ) table.auto_set_font_size(False) table.set_fontsize(10) # Apply text wrapping and center alignment to non-header cells for (row, col), cell in table.get_celld().items(): if cell.get_text().get_text() == "nan": cell.set_text_props(text="", ha="center") if row == 0: cell.set_text_props( weight="bold", ha="center" ) # Bold and center-align header text if col == 0: text = cell.get_text().get_text() wrapped_text = wrap_text(text, 9) cell.set_text_props(text=wrapped_text, ha="center", linespacing=1) else: text = cell.get_text().get_text() wrapped_text = wrap_text(text) cell.set_text_props( text=wrapped_text, ha="center", fontsize=10, linespacing=1, ) # Enable text wrapping and center-align # Manually scale table if needed for better readability with wrapped text table.scale(1, 4) # Adjust row height # Ensure the layout is adjusted properly plt.tight_layout(pad=0.5) # Increase padding slightly # Save the figure to a bytes buffer buffer = BytesIO() fig.savefig( buffer, format="png", pad_inches=0.2 ) # Adjust padding around the figure plt.close(fig) # Close the figure to free up memory buffer.seek(0) image = Image.open(buffer) # logger.info("Image generated by matplotlib successfully!") return image """使用plotly生成图片""" def color_mapping(color): color_hex = { "turquoise": "#28b6aa", "chartreuse": "#dcde82", "red": "#981c05", "yellow": "#f4ca3a", "pink": "#fd8d9b", "blue": "#4194bd", "white": "#ffffff", "black": "#b7b7b7", "orange": "#d97413", "purple": "#8a659a", "viridian": "#a1c42a", } # if color == "" or color == "✔": # return "white" return color_hex.get(color, "white") def styled_header(header): return dict( values=[[f"{attr.upper()}"] for attr in header], line_color="darkslategray", fill_color="royalblue", align=["center"], font=dict(color="white", size=10), # height=40 ) def styled_cells(cells): return dict( values=cells, line_color="darkslategray", fill_color=["lavender", "white", "white", "white", "white"] + [[color_mapping(str(el)) for el in col] for col in cells[5:]], align="center", font_size=10, height=30, ) def handle_element(el): emoji_mapping = { "harvest": "🌱", "light": "🌞", "moisture": "💧", "mood": "💗", "sell": "💲", "collect": "🖐️", "hygiene": "🧽", "pest": "🐛", "overgrowth": "🌿", "show": "👩🏻🌾", } if isinstance(el, str): if el == "✔": return "✅" for cond in emoji_mapping.keys(): if cond in el.lower(): new_text = el + emoji_mapping[cond] return new_text return el def generate_img_by_plotly(df): df.fillna("", inplace=True) cells_values = [df[col].to_list() for col in df.columns] header_values = list(df.columns) # add emoji cells_values = [[handle_element(el) for el in col] for col in cells_values] # Create the table figure fig = go.Figure( data=[ go.Table( header=styled_header(header_values), cells=styled_cells(cells_values), columnwidth=[80, 160, 160, 160, 160, 80, 80, 80, 80, 80, 80], ) ] ) fig.add_annotation( text=f'Herbology Almanac Checklist Generated on(GMT): {datetime.datetime.now(tz=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")}', xref="paper", yref="paper", x=0.5, y=0, showarrow=False, ) fig.update_layout( width=1200, height=1200, margin=dict(l=20, r=20, t=20, b=20), # title_text=f'Herbology Almanac Checklist Generated on(GMT): {datetime.datetime.now(tz=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")}', # annotations=[ # dict( # text=f"Generated on(GMT): {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}", # xref="paper", # yref="paper", # x=0.5, # 水平居中 # y=-0.1, # 距离图表底部的位置 # showarrow=False, # font=dict(size=10), # ) # ], ) buffer = BytesIO() fig.write_image(buffer, format="png") buffer.seek(0) image = Image.open(buffer) # logger.info("Image generated by plotly successfully!") return image with gr.Blocks() as app: gr.Markdown( """