import base64 import datetime import gradio as gr import pandas as pd import pytz import plotly.graph_objects as go import matplotlib.pyplot as plt from PIL import Image from io import BytesIO import plotly.io as pio pio.renderers.default = "browser" df = pd.read_csv("herbologist_almanac_checklist_data.csv") columns_with_tasks = [ "task1", "task2", "task3", "task4", "color1", "color2", "color3", "color4", "color5", "color6", ] PLANTS = list(df["plant"].unique()) # 更改字体设置 # rc("font", family="Arial Unicode MS") # def decimal2base64(decimal_int): # # 定义 64 进制字符集 # base64_chars = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" # if decimal_int == 0: # return "0" # base64_str = "" # while decimal_int > 0: # remainder = decimal_int % 64 # base64_str = base64_chars[remainder] + base64_str # decimal_int //= 64 # return base64_str def bin_ls2base64(ls): # 将二进制列表转换为二进制列表 binary_str = "".join(str(n) for n in ls) # decimal_int = int(bin_str, 2) byte_str = int(binary_str, 2).to_bytes((len(binary_str) + 7) // 8, byteorder="big") base64_str = base64.b64encode(byte_str).decode("utf-8") return base64_str def base64_to_binary(base64_str): if isinstance(base64_str, str): # 将base64字符串转换为二进制列表 byte_str = base64.b64decode(base64_str) binary_str = bin(int.from_bytes(byte_str, byteorder="big"))[2:].zfill( len(columns_with_tasks) * len(PLANTS) ) # ls = [int(n) for n in binary_str] return binary_str def parse_token(token): try: if not token: # 处理空字符串的情况 token = "\x00" if len(token) > 0: payload = base64_to_binary(token) almanac_data: list = [int(n) for n in payload] # print(len(almanac_data)) parsed_dict = {} for _, row in df.iterrows(): parsed_dict[row["plant"]] = [ almanac_data.pop() for _ in range(len(columns_with_tasks)) ] return parsed_dict except Exception as e: print(e) # 定义一个简单的函数,模拟接收DataFrame数据 def process_data(*args): plot_library = args[-1] almanac_dict = dict(zip(PLANTS, args[:-1])) almanac_df = df.filter(items=["plant", "name"] + columns_with_tasks) almanac_bin_ls = [] for pl in PLANTS: # TODO refactor by using len almanac_inp = almanac_dict[pl] almanac_bin = [0 for _ in range(len(columns_with_tasks))] for n in almanac_inp: almanac_bin[n] = 1 almanac_bin_ls += almanac_bin for _, i in enumerate(almanac_inp): almanac_df.loc[almanac_df["plant"] == pl, columns_with_tasks[i]] = "✔" almanac_reverse_64 = bin_ls2base64(reversed(almanac_bin_ls)) # 这里可以添加处理DataFrame的逻辑 return ( ( generate_img_by_plotly(almanac_df.drop(columns=df.columns[0])) if plot_library == "plotly" else generate_img_by_matplotlib(almanac_df.drop(columns=df.columns[0])) ), almanac_reverse_64, ) def show_checkbox_groups(token): checklist_inputs = [] parsed_dict = parse_token(token) for index, row in df.iterrows(): tasks = [ row[col][0].upper() + row[col][1:] for col in columns_with_tasks if df.notnull().at[index, col] ] with gr.Row(): checkbox = gr.CheckboxGroup( tasks, label=f"{row['name']}", value=[ tasks[i] for i, v in enumerate(parsed_dict[row["plant"]]) if v == 1 and df.notnull().at[index, columns_with_tasks[i]] ], type="index", ) checklist_inputs.append(checkbox) return checklist_inputs def wrap_text(text, max_width=20): """Manually wrap text based on max_width (character count)""" wrapped_lines = [] words = text.split(" ") line = "" for word in words: if len(line) + len(word) + 1 <= max_width: line += word + " " else: wrapped_lines.append(line.strip()) line = word + " " wrapped_lines.append(line.strip()) return "\n".join(wrapped_lines) def generate_img_by_matplotlib(df): fig, ax = plt.subplots( figsize=(12, 16) ) # Adjust the figure size for better readability ax.axis("off") # Turn off the axis # Create a table with a light grey background for the header table = ax.table( cellText=df.values, colLabels=df.columns, loc="center", colColours=["#f2f2f2"] * len(df.columns), colWidths=[w / len(df.columns) for w in [1] + [2] * 4 + [1] * 6], ) table.auto_set_font_size(False) table.set_fontsize(10) # Apply text wrapping and center alignment to non-header cells for (row, col), cell in table.get_celld().items(): if cell.get_text().get_text() == "nan": cell.set_text_props(text="", ha="center") if row == 0: cell.set_text_props( weight="bold", ha="center" ) # Bold and center-align header text if col == 0: text = cell.get_text().get_text() wrapped_text = wrap_text(text, 9) cell.set_text_props(text=wrapped_text, ha="center", linespacing=1) else: text = cell.get_text().get_text() wrapped_text = wrap_text(text) cell.set_text_props( text=wrapped_text, ha="center", fontsize=10, linespacing=1, ) # Enable text wrapping and center-align # Manually scale table if needed for better readability with wrapped text table.scale(1, 4) # Adjust row height # Ensure the layout is adjusted properly plt.tight_layout(pad=0.5) # Increase padding slightly # Save the figure to a bytes buffer buffer = BytesIO() fig.savefig( buffer, format="png", pad_inches=0.2 ) # Adjust padding around the figure plt.close(fig) # Close the figure to free up memory buffer.seek(0) image = Image.open(buffer) return image def color_mapping(color): color_hex = { "turquoise": "#28b6aa", "chartreuse": "#dcde82", "red": "#981c05", "yellow": "#f4ca3a", "pink": "#fd8d9b", "blue": "#4194bd", "white": "#ffffff", "black": "#b7b7b7", "orange": "#d97413", "purple": "#8a659a", "viridian": "#a1c42a", } # if color == "" or color == "✔": # return "white" return color_hex.get(color, "white") def styled_header(header): return dict( values=[[f"{attr.upper()}"] for attr in header], line_color="darkslategray", fill_color="royalblue", align=["center"], font=dict(color="white", size=10), # height=40 ) def styled_cells(cells): return dict( values=cells, line_color="darkslategray", fill_color=["lavender", "white", "white", "white", "white"] + [[color_mapping(str(el)) for el in col] for col in cells[5:]], align="center", font_size=10, height=30, ) def handle_element(el): emoji_mapping = { "light": "🌞", "moisture": "💧", "mood": "💗", "sell": "💲", "harvest": "🌱", "collect": "🖐️", "hygiene": "🧽", "pest": "🐛", "overgrowth": "🌿", "show": "👩🏻‍🌾", } if isinstance(el, str): if el == "✔": return "✅" for cond in emoji_mapping.keys(): if cond in el.lower(): new_text = el + emoji_mapping[cond] return new_text return el def generate_img_by_plotly(df): df.fillna("", inplace=True) cells_values = [df[col].to_list() for col in df.columns] header_values = list(df.columns) # add emoji cells_values = [[handle_element(el) for el in col] for col in cells_values] # Create the table figure fig = go.Figure( data=[ go.Table( header=styled_header(header_values), cells=styled_cells(cells_values), columnwidth=[80, 160, 160, 160, 160, 80, 80, 80, 80, 80, 80], ) ] ) fig.add_annotation( text=f'Herbology Almanac Checklist Generated on(GMT): {datetime.datetime.now(tz=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")}', xref="paper", yref="paper", x=0.5, y=0, showarrow=False, ) fig.update_layout( width=1200, height=1200, margin=dict(l=20, r=20, t=20, b=20), # title_text=f'Herbology Almanac Checklist Generated on(GMT): {datetime.datetime.now(tz=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")}', # annotations=[ # dict( # text=f"Generated on(GMT): {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}", # xref="paper", # yref="paper", # x=0.5, # 水平居中 # y=-0.1, # 距离图表底部的位置 # showarrow=False, # font=dict(size=10), # ) # ], ) buffer = BytesIO() fig.write_image(buffer, format="png") buffer.seek(0) image = Image.open(buffer) return image with gr.Blocks() as app: gr.Markdown( """
👩🏻‍🌾Herbology Almanac Checklist Generator📝
This is a simple web app that generates an almanac checklist for your plants. """ ) gr.Markdown( """ # RECOVERY TOKEN """ ) recovery_token = gr.Textbox( value="", label="Recovery Token", info="Save this token or paste your saved one here", placeholder="Keep this token to restore your previous input".upper(), interactive=True, ) gr.Markdown( """ # YOUR RESEARCH TASKS """ ) checklist_inputs = show_checkbox_groups(recovery_token.value) gr.Markdown( """ # IMAGE STYLE """ ) plot_library = gr.Radio( ["matplotlib", "plotly"], label="Plot Library", value="matplotlib", info="Choose your plot library", ) submit_button = gr.Button("Generate Image and Token") # df_out = gr.Dataframe(label="Output Dataframe", interactive=False) generated_img = gr.Image(label="Generated Image", format="png", type="pil") logs = gr.Markdown( """ # CHANGELOG - 2024/08/31: Initial release - 2024/09/03: Fix a mistake in the tasks of mimbulus - 2024/09/04: Correct Radiant count for water hyacinth - 2024/09/05: Support image generated by plotly """ ) submit_button.click( process_data, inputs=checklist_inputs + [plot_library], outputs=[generated_img, recovery_token], ) recovery_token.change( show_checkbox_groups, inputs=[recovery_token], outputs=checklist_inputs, ) # generate_button.click( # generate_img, # inputs=[df_out], # outputs=[generated_img], # ) app.queue() app.launch()