oh-my-dear-ai's picture
[optimize](app) Add timestamp to optimize output messages
9419c52
import gradio as gr
import pandas as pd
import numpy as np
from numpy.typing import NDArray
from pyscipopt import Model, quicksum
from datetime import datetime
# Define the quality tiers and names for the plants
PLANTS_TIERS = {
"radiant": "RADIANT",
"flourishing": "FLOURISHING",
"hardy": "HARDY",
"feeble": "FEEBLE",
"radiant_rarecolor": "RADIANT+RARE",
"flourishing_rarecolor": "FLOURISHING+RARE",
"hardy_rarecolor": "HARDY+RARE",
}
PLANTS_LABLES = {
"fanged_geranium": "Fanged Geranium",
"gillyweed": "Gillyweed",
"rose": "Rose",
"puffapod": "Puffapod",
"wild_pansy": "Wild Pansy",
"nifflers_fancy": "Niffler's Fancy",
"fanwort": "Fanwort",
"ladys_mantle": "Lady's Mantle",
"kelp": "Kelp",
"mandrake": "Mandrake",
"chinese_chomping_cabbage": "Chinese Chomping Cabbage",
"dragons_breath_macroalgae": "Dragon's Breath Macroalgae",
"peony": "Peony",
"begonia": "Begonia",
"mayflower": "Mayflower",
"hydrangea": "Hydrangea",
"ludwigia_glandulosa": "Ludwigia Glandulosa",
"daffodil": "Daffodil",
"water_hyacinth": "Water Hyacinth",
"lily_of_the_valley": "Lily of the Valley",
"mosaic_flower": "Mosaic Flower",
"sunflower": "Sunflower",
"mimbulus_mimbletonia": "Mimbulus Mimbletonia",
"water_lily": "Water Lily",
}
INTERFACE_TEXTS = {
"cn": {
"gold_label": "葭碧の金币预算:",
"strategies_label": "请选择凑单策略:",
"clear_btn_label": "❌清除",
"calculate_btn_label": "🛠计算",
"output_label": "计算结果:",
"strategy_options": [
("最小化售出株数(优先出售高价植物)", "MaximizeStock"),
("最大化售出株数(优先出售低价植物)", "MinimizeStock"),
],
},
"en": {
"gold_label": "Gabby's Gold Budget:",
"strategies_label": "Select a strategy:",
"clear_btn_label": "❌Clear",
"calculate_btn_label": "🛠Calculate",
"output_label": "Output:",
"strategy_options": [
(
"Minimize the number of plants sold (prioritize high-priced plants)",
"MaximizeStock",
),
(
"Maximize the number of plants sold (prioritize low-priced plants)",
"MinimizeStock",
),
],
},
}
def process_csv(file_path):
"""import and process plants data"""
df = pd.read_csv(file_path)
df["species"] = pd.Categorical(df["species"])
df["tier"] = pd.Categorical(df["tier"])
# df = df.dropna(subset=["gold"])
df = df.astype(
{
"gold": int,
"gems": int,
}
)
return df
df = process_csv("plants.csv")
GOLD_PLANTS = set(
row["species"]
for _, row in df.iterrows()
if row["gold"] != 0 and row["tier"] != "feeble"
)
GEMS_PLANTS = set(
row["species"]
for _, row in df.iterrows()
if row["gems"] != 0 and row["tier"] != "feeble"
)
def check_currency(plant, currency):
if currency == "gold":
return plant in GOLD_PLANTS
elif currency == "gems":
return plant in GEMS_PLANTS
def calculator(currency, budget, strategy, extra_rate, *amount):
"""
Calculate the optimal solution of plant sales based on the given budget
and inventory constraints.
Args:
*args (tuple): A tuple containing:
- currency (str): The currency used for purchasing plants ("gold" or "gems").
- budget (int): Gabby's gold budget.
- strategy (str): The selected strategy for selling plants ("MaximizeStock" or "MinimizeStock").
- extra_rate (int): The premium rate for selling plants.
- amount (list of int): Stock levels of each plant type.
Returns:
str: A description of the optimal solution, including which plants to sell,
the total gold earned, and the remaining inventory.
Returns an error message if no solution is found.
"""
# currency: str, budget: int, strategy:str, extra_rate:int = args[0:4]
# budget: int = args[0] # 葭碧预算
# strategy: str = args[1] # 出售策略
# extra_rate: int = args[2] # 高价收购倍率
stocks: NDArray[np.int_ | np.integer] = np.array(
[x if x else 0 for x in amount]
) # 植物库存
# Plant names and prices
plants_names = [
f"{PLANTS_TIERS[row['tier']]} {PLANTS_LABLES[row['species']]}"
for index, row in df.iterrows()
]
price = df[currency] # 植物单价
sold_prices = np.array(price * (1 + extra_rate))
# Initialize the master problem
model = Model("BewilderingBlooms")
# Decision variables in master problem
x = [
model.addVar(
vtype="I", name=f"x_{i}", lb=0, ub=int(stocks[i]) if stocks[i] else 0
)
for i in range(len(stocks))
]
obj1 = quicksum(sold_prices[i] * x[i] for i in range(len(stocks)))
obj2 = quicksum(x[i] for i in range(len(stocks)))
# Objective: maximize total value of sold plants
model.setObjective(obj1, "maximize")
model.addCons(obj1 <= budget)
# first optimize
model.hideOutput()
model.optimize()
if model.getStatus() == "optimal":
optimal_total_value = model.getObjVal()
print(
f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] First-stage optimal total value: {optimal_total_value}"
)
model.freeTransform()
model.setObjective(
obj2, "maximize" if strategy == "MinimizeStock" else "minimize"
)
model.addCons(obj1 == optimal_total_value)
model.optimize()
# Final solution processing
solution = []
total_price = 0
total_count = 0
if model.getStatus() == "optimal":
for i, var in enumerate(x):
if (v := round(model.getVal(var))) > 0 and sold_prices[i] > 0:
solution.append(
f"{plants_names[i]} ({sold_prices[i]} {currency}): {v}\n"
)
total_price += v * sold_prices[i]
total_count += v
if optimal_total_value == budget:
return f"Great! Found a combination of items with a total value equal to the budget ({budget} {currency}).😃\n\n{''.join(solution)}\nTotal value: {total_price} {currency}\nTotal count: {total_count}" # Count: {int(model.getObjVal())}
return f"Oops! {round(budget - optimal_total_value)} {currency} short of the target value ({budget} {currency}).😣\n\n{''.join(solution)}\nTotal value: {total_price} {currency}\nTotal count: {total_count}" # Count: {int(model.getObjVal())}
return "No solution found for the second optimization!"
return "No solution found for the first optimization!"
# 高亮每种植物的最高品质
css = """
.highlight-first-gold {background-color: #fafad2}
.highlight-first-gems {background-color: #fed9b4}
"""
def show_checkboxgroup(currency, select_all=False):
"""
根据选定的货币显示选择框。
"""
plants_tuples: list[tuple[str, str]] = [
(PLANTS_LABLES[pl], pl)
for pl in PLANTS_LABLES.keys()
if check_currency(pl, currency)
]
if select_all:
default_value = [v for (n, v) in plants_tuples if select_all]
else:
default_value = None
checkbox_group_component = gr.CheckboxGroup(
choices=plants_tuples,
value=default_value,
type="value",
label="Plants",
info="Select plants",
interactive=True,
)
return checkbox_group_component
def show_plant_boxes(currency, plants=None):
_inventory = {}
species_set = set()
species_count = 0
new_species = False
for _, row in df.iterrows():
if (
row[currency] != 0
and row["tier"] != "feeble"
and (not plants or row["species"] in plants)
):
species_set.add(row["species"])
inventory_key = f"{row['species']}_{row['tier']}"
_inventory[inventory_key] = gr.Number(
label=PLANTS_LABLES[row["species"]],
info=f"{PLANTS_TIERS[row['tier']]} ${row[currency]}",
value=0,
precision=0,
minimum=0,
maximum=500,
step=10,
visible=True,
elem_classes=(
f"highlight-first-{currency}"
if len(species_set) > species_count
else None
),
)
species_count = len(species_set)
else:
_inventory[f"{row['species']}_{row['tier']}"] = gr.Number(
value=0, visible=False
)
return list(_inventory.values())
def handle_currency(currency):
"""
根据选定的货币类型更新库存组件"""
return [False, show_checkboxgroup(currency)] + show_plant_boxes(currency, None)
def handle_select_all(initial_state, currency):
return [(not initial_state)] + [show_checkboxgroup(currency, not initial_state)]
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<center><font size=8>HPMA Bewildering Blooms Calculator👨🏻‍🌾</font></center>
This program is essentially a solver for a variant of the knapsack problem.
Another more versatile [application](https://huggingface.co/spaces/oh-my-dear-ai/easy-knapsack-problem).
"""
)
# Create a Gradio interface with a column layout
with gr.Column():
# Add a row for the currency selection
currency_radio = gr.Radio(
choices=["gold", "gems"],
value="gold",
type="value",
label="Currency",
info="Select the currency:",
render=True,
)
# Add a row for the budget input
budget = gr.Number(
label="Target",
info="Gabby's Budget:", # "葭碧の金币预算:",
value=0,
minimum=0,
maximum=20000,
step=100,
)
acquisition_rate = gr.Dropdown(
choices=[
"0(Gabby's Acquisition)",
"+100%(HVA for Budding & Novice)",
"+200%(HVA for Junior & Practiced)",
"+300%(HVA for Natural & Master)",
],
value="0(Gabby's Acquisition)",
type="index",
label="Extra Acquisition Rate",
info="Select your high-value acquisition rate:",
)
# Add a radio selection for the strategy
selected_strategy = gr.Radio(
[
(
"Minimize the number of plants sold (prioritize high-priced plants)",
"MaximizeStock",
),
(
"Maximize the number of plants sold (prioritize low-priced plants)",
"MinimizeStock",
),
],
value="MaximizeStock",
label="Strategies",
info="Select a strategy:",
)
plants_filter = show_checkboxgroup(currency_radio.value)
with gr.Row():
select_all_state = gr.State(False)
select_all_button = gr.Button(value="Select All⭕", size="sm")
filter_button = gr.Button(value="Filter Plants🔍", size="lg")
# Create the dynamic plant inventory inputs
with gr.Row() as inventory_row:
inventory = show_plant_boxes(currency_radio.value, plants_filter.value)
# Add a row for the Clear and Calculate buttons
with gr.Row():
inventory_clear_btn = gr.ClearButton(inventory, size="sm", value="❌Clear")
# Add a button to trigger the calculation
inventory_submit_btn = gr.Button(value="🛠Calculate")
# Add a row for the result textbox
with gr.Row():
result = gr.Textbox(label="Output")
# Set up the button click event to call the calculator function
inventory_submit_btn.click(
calculator,
inputs=[currency_radio, budget, selected_strategy, acquisition_rate]
+ inventory,
outputs=[result],
api_name=False,
)
# Update the inventory when the currency changes
currency_radio.change(
fn=handle_currency, # Adjusted function to return only the components
inputs=[currency_radio],
outputs=[
select_all_state,
plants_filter,
]
+ inventory, # Update each child in the inventory_row
)
filter_button.click(
fn=show_plant_boxes,
inputs=[currency_radio, plants_filter],
outputs=inventory,
)
select_all_button.click(
fn=handle_select_all,
inputs=[select_all_state, currency_radio],
outputs=[select_all_state, plants_filter],
)
# Launch the Gradio application
demo.queue(api_open=False)
demo.launch(max_threads=5, share=False)