Spaces:
Running
on
Zero
Running
on
Zero
import os | |
if os.getenv('SPACES_ZERO_GPU') == "true": | |
os.environ['SPACES_ZERO_GPU'] = "1" | |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0" | |
import spaces | |
import cv2 | |
import gradio as gr | |
import torch | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from basicsr.utils import img2tensor, tensor2img | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from realesrgan.utils import RealESRGANer | |
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow | |
torch.set_grad_enabled(False) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
os.makedirs('pretrained_models', exist_ok=True) | |
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' | |
if not os.path.exists(realesr_model_path): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") | |
# background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device) | |
face_helper_dummy = FaceRestoreHelper( | |
1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
model_rootpath=None) | |
os.makedirs('output', exist_ok=True) | |
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): | |
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) | |
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) | |
x_t_next = source_dist_samples.clone() | |
t_one = torch.ones(x.shape[0], device=device) | |
for i in range(num_flow_steps): | |
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps | |
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) | |
x_t_next = x_t_next.clone() + v_t_next * dt | |
return x_t_next.clip(0, 1).to(torch.float32) | |
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2): | |
face_helper.clean_all() | |
if has_aligned: # the inputs are already aligned | |
img = cv2.resize(img, (512, 512)) | |
face_helper.cropped_faces = [img] | |
else: | |
face_helper.read_image(img) | |
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) | |
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels | |
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. | |
# align and warp each face | |
face_helper.align_warp_face() | |
# face restoration | |
for cropped_face in face_helper.cropped_faces: | |
# prepare data | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
dummy_x = torch.zeros_like(cropped_face_t) | |
with torch.autocast("cuda", dtype=torch.bfloat16): | |
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device) | |
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)) | |
# restored_face = cropped_face | |
restored_face = restored_face.astype('uint8') | |
face_helper.add_restored_face(restored_face) | |
if not has_aligned and paste_back: | |
# upsample the background | |
if upsampler is not None: | |
# Now only support RealESRGAN for upsampling background | |
bg_img = upsampler.enhance(img, outscale=scale)[0] | |
else: | |
bg_img = None | |
face_helper.get_inverse_affine(None) | |
# paste each restored face to the input image | |
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) | |
return face_helper.cropped_faces, face_helper.restored_faces, restored_img | |
else: | |
return face_helper.cropped_faces, face_helper.restored_faces, None | |
def inference(img, aligned, scale, num_flow_steps): | |
if scale > 4: | |
scale = 4 # avoid too large scale value | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 2: # for gray inputs | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
h, w = img.shape[0:2] | |
if h > 3500 or w > 3500: | |
print('Image size too large.') | |
return None, None | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
face_helper = FaceRestoreHelper( | |
scale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
model_rootpath=None) | |
has_aligned = True if aligned == 'Yes' else False | |
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, | |
paste_back=True, num_flow_steps=num_flow_steps, scale=scale) | |
if has_aligned: | |
output = restored_aligned[0] | |
else: | |
output = restored_img | |
save_path = f'output/out.png' | |
cv2.imwrite(save_path, output) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
return output, save_path | |
title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration" | |
description = r""" | |
Gradio demo for the blind face image restoration version of <a href='https://arxiv.org/abs/2410.00418' target='_blank'><b>Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</b></a>. | |
Please refer to our project's page for more details: https://pmrf-ml.github.io/. | |
--- | |
You may use this demo to enhance the quality of any image which contains faces. | |
1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below. | |
2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately. | |
<b>NOTE</b>: Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed. | |
""" | |
css = r""" | |
""" | |
demo = gr.Interface( | |
inference, [ | |
gr.Image(type="filepath", label="Input"), | |
gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'), | |
gr.Number(label="Scale factor for the background upsampler. Insert a value between 1 and 4 (including). Applicable only to non-aligned face images.", value=1), | |
gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25), | |
], [ | |
gr.Image(type="numpy", label="Output"), | |
gr.File(label="Download the output image") | |
], | |
title=title, | |
description=description | |
) | |
demo.queue() | |
demo.launch(state_session_capacity=15) |