Spaces:
Running
on
Zero
Running
on
Zero
ohayonguy
commited on
Commit
·
1fef40b
1
Parent(s):
20ac05d
trying to fix interface
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ if os.getenv('SPACES_ZERO_GPU') == "true":
|
|
5 |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
|
6 |
import spaces
|
7 |
import cv2
|
|
|
8 |
import gradio as gr
|
9 |
import random
|
10 |
import torch
|
@@ -51,10 +52,12 @@ def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, dev
|
|
51 |
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
|
52 |
x_t_next = source_dist_samples.clone()
|
53 |
t_one = torch.ones(x.shape[0], device=device)
|
54 |
-
|
|
|
55 |
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
|
56 |
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
|
57 |
x_t_next = x_t_next.clone() + v_t_next * dt
|
|
|
58 |
|
59 |
return x_t_next.clip(0, 1).to(torch.float32)
|
60 |
|
@@ -78,7 +81,7 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
|
|
78 |
# prepare data
|
79 |
h, w = cropped_face.shape[0], cropped_face.shape[1]
|
80 |
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
|
81 |
-
face_helper.cropped_faces[i] = cropped_face
|
82 |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
83 |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
84 |
|
@@ -108,7 +111,11 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
|
|
108 |
|
109 |
@torch.inference_mode()
|
110 |
@spaces.GPU()
|
111 |
-
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps
|
|
|
|
|
|
|
|
|
112 |
if randomize_seed:
|
113 |
seed = random.randint(0, MAX_SEED)
|
114 |
torch.manual_seed(seed)
|
@@ -139,16 +146,16 @@ def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
|
|
139 |
scale=scale)
|
140 |
if has_aligned:
|
141 |
output = restored_aligned[0]
|
142 |
-
input = cropped_face[0].astype('uint8')
|
143 |
else:
|
144 |
output = restored_img
|
145 |
-
input = img
|
146 |
|
147 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
148 |
-
h, w = output.shape[0:2]
|
149 |
-
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
|
150 |
-
input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR)
|
151 |
-
return
|
152 |
|
153 |
|
154 |
intro = """
|
@@ -215,7 +222,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
215 |
|
216 |
with gr.Row():
|
217 |
with gr.Column(scale=2):
|
218 |
-
input_im = gr.Image(label="Input
|
219 |
with gr.Column(scale=1):
|
220 |
num_inference_steps = gr.Slider(
|
221 |
label="Number of Inference Steps",
|
@@ -246,7 +253,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
246 |
run_button = gr.Button(value="Submit", variant="primary")
|
247 |
|
248 |
with gr.Row():
|
249 |
-
result =
|
250 |
|
251 |
gr.Markdown(article)
|
252 |
gr.on(
|
@@ -266,4 +273,4 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
266 |
)
|
267 |
|
268 |
demo.queue()
|
269 |
-
demo.launch(state_session_capacity=15
|
|
|
5 |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
|
6 |
import spaces
|
7 |
import cv2
|
8 |
+
from tqdm import tqdm
|
9 |
import gradio as gr
|
10 |
import random
|
11 |
import torch
|
|
|
52 |
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
|
53 |
x_t_next = source_dist_samples.clone()
|
54 |
t_one = torch.ones(x.shape[0], device=device)
|
55 |
+
pbar = tqdm(range(num_flow_steps))
|
56 |
+
for i in pbar:
|
57 |
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
|
58 |
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
|
59 |
x_t_next = x_t_next.clone() + v_t_next * dt
|
60 |
+
pbar.set_description(f'Flow step {i}')
|
61 |
|
62 |
return x_t_next.clip(0, 1).to(torch.float32)
|
63 |
|
|
|
81 |
# prepare data
|
82 |
h, w = cropped_face.shape[0], cropped_face.shape[1]
|
83 |
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
|
84 |
+
# face_helper.cropped_faces[i] = cropped_face
|
85 |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
86 |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
87 |
|
|
|
111 |
|
112 |
@torch.inference_mode()
|
113 |
@spaces.GPU()
|
114 |
+
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps,
|
115 |
+
progress=gr.Progress(track_tqdm=True)):
|
116 |
+
if img is None:
|
117 |
+
gr.Info("Please upload an image before submitting")
|
118 |
+
return [None, None, None]
|
119 |
if randomize_seed:
|
120 |
seed = random.randint(0, MAX_SEED)
|
121 |
torch.manual_seed(seed)
|
|
|
146 |
scale=scale)
|
147 |
if has_aligned:
|
148 |
output = restored_aligned[0]
|
149 |
+
# input = cropped_face[0].astype('uint8')
|
150 |
else:
|
151 |
output = restored_img
|
152 |
+
# input = img
|
153 |
|
154 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
155 |
+
# h, w = output.shape[0:2]
|
156 |
+
# input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
|
157 |
+
# input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR)
|
158 |
+
return output
|
159 |
|
160 |
|
161 |
intro = """
|
|
|
222 |
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=2):
|
225 |
+
input_im = gr.Image(label="Input", type="filepath", show_label=True)
|
226 |
with gr.Column(scale=1):
|
227 |
num_inference_steps = gr.Slider(
|
228 |
label="Number of Inference Steps",
|
|
|
253 |
run_button = gr.Button(value="Submit", variant="primary")
|
254 |
|
255 |
with gr.Row():
|
256 |
+
result = gr.Image(label="Output", type="numpy", show_label=True)
|
257 |
|
258 |
gr.Markdown(article)
|
259 |
gr.on(
|
|
|
273 |
)
|
274 |
|
275 |
demo.queue()
|
276 |
+
demo.launch(state_session_capacity=15)
|