import os if os.getenv('SPACES_ZERO_GPU') == "true": os.environ['SPACES_ZERO_GPU'] = "1" os.environ['K_DIFFUSION_USE_COMPILE'] = "0" import spaces import cv2 import gradio as gr import random import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from basicsr.utils import img2tensor, tensor2img from gradio_imageslider import ImageSlider from facexlib.utils.face_restoration_helper import FaceRestoreHelper from realesrgan.utils import RealESRGANer from lightning_models.mmse_rectified_flow import MMSERectifiedFlow torch.set_grad_enabled(False) MAX_SEED = 1000000 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs('pretrained_models', exist_ok=True) realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' if not os.path.exists(realesr_model_path): os.system( "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") # background enhancer with RealESRGAN model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, half=half) pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device) face_helper_dummy = FaceRestoreHelper( 1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) os.makedirs('output', exist_ok=True) def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) x_t_next = source_dist_samples.clone() t_one = torch.ones(x.shape[0], device=device) for i in range(num_flow_steps): num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) x_t_next = x_t_next.clone() + v_t_next * dt return x_t_next.clip(0, 1).to(torch.float32) @torch.inference_mode() @spaces.GPU() def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2): face_helper.clean_all() if has_aligned: # the inputs are already aligned img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) face_helper.cropped_faces = [img] else: face_helper.read_image(img) face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. # align and warp each face face_helper.align_warp_face() # face restoration for cropped_face in face_helper.cropped_faces: # prepare data h, w = cropped_face.shape[0], cropped_face.shape[1] cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR) cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) dummy_x = torch.zeros_like(cropped_face_t) # with torch.autocast("cuda", dtype=torch.bfloat16): output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device) restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)) # restored_face = cropped_face restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR) restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face) if not has_aligned and paste_back: # upsample the background if upsampler is not None: # Now only support RealESRGAN for upsampling background bg_img = upsampler.enhance(img, outscale=scale)[0] else: bg_img = None face_helper.get_inverse_affine(None) # paste each restored face to the input image restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) return face_helper.cropped_faces, face_helper.restored_faces, restored_img else: return face_helper.cropped_faces, face_helper.restored_faces, None @torch.inference_mode() @spaces.GPU() def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) torch.manual_seed(seed) if scale > 4: scale = 4 # avoid too large scale value img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 2: # for gray inputs img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) h, w = img.shape[0:2] if h > 4500 or w > 4500: print('Image size too large.') return None, None if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) face_helper = FaceRestoreHelper( scale, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) has_aligned = True if aligned == 'Yes' else False cropped_face, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, num_flow_steps=num_flow_steps, scale=scale) if has_aligned: output = restored_aligned[0] input = cropped_face[0].astype('uint8') else: output = restored_img input = img save_path = f'output/out.png' cv2.imwrite(save_path, output) output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) h, w = output.shape[0:2] input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR) return [[input, output, seed], save_path] intro = """

Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration

[Paper] |  [Project Page] |  [Code]

""" markdown_top = """ Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418). Please refer to our project's page for more details: https://pmrf-ml.github.io/. --- You may use this demo to enhance the quality of any image which contains faces. *Notes* : 1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed. 2. Images that are too large won't work due to memory constraints. """ article = r""" If you find our work useful, please help to ⭐ our GitHub repository. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF) 📝 **Citation** If our work is useful for your research, please consider citing: ```bibtex @article{ohayon2024pmrf, author = {Guy Ohayon and Tomer Michaeli and Michael Elad}, title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration}, journal = {arXiv preprint arXiv:2410.00418}, year = {2024}, url = {https://arxiv.org/abs/2410.00418} } ``` 📋 **License** This project is released under the MIT license. Redistribution and use for non-commercial purposes should follow this license. 📧 **Contact** If you have any questions, please feel free to contact me at guyoep@gmail.com. """ css = """ #col-container { margin: 0 auto; max-width: 512px; } """ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: gr.HTML(intro) gr.Markdown(markdown_top) with gr.Row(): run_button = gr.Button(value="Submit", variant="primary") with gr.Row(): with gr.Column(scale=2): input_im = gr.Image(label="Input Image", type="filepath") with gr.Column(scale=1): num_inference_steps = gr.Slider( label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=25, ) upscale_factor = gr.Slider( label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, step=0.1, value=1, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) aligned = gr.Checkbox(label="The input is an aligned face image", value=True) with gr.Row(): result = ImageSlider(label="Input / Output", type="numpy", interactive=True) with gr.Row(): file = gr.File(label="Download the output image") # examples = gr.Examples( # examples=[ # # [42, False, "examples/image_1.jpg", 28, 4, 0.6], # # [42, False, "examples/image_2.jpg", 28, 4, 0.6], # # [42, False, "examples/image_3.jpg", 28, 4, 0.6], # # [42, False, "examples/image_4.jpg", 28, 4, 0.6], # # [42, False, "examples/image_5.jpg", 28, 4, 0.6], # # [42, False, "examples/image_6.jpg", 28, 4, 0.6], # ], # inputs=[ # seed, # randomize_seed, # input_im, # num_inference_steps, # upscale_factor, # controlnet_conditioning_scale, # ], # fn=infer, # outputs=result, # cache_examples="lazy", # ) # examples = gr.Examples( # examples=[ # #[42, False, "examples/image_1.jpg", 28, 4, 0.6], # [42, False, "examples/image_2.jpg", 28, 4, 0.6], # #[42, False, "examples/image_3.jpg", 28, 4, 0.6], # #[42, False, "examples/image_4.jpg", 28, 4, 0.6], # [42, False, "examples/image_5.jpg", 28, 4, 0.6], # [42, False, "examples/image_6.jpg", 28, 4, 0.6], # [42, False, "examples/image_7.jpg", 28, 4, 0.6], # ], # inputs=[ # seed, # randomize_seed, # input_im, # num_inference_steps, # upscale_factor, # controlnet_conditioning_scale, # ], # ) gr.Markdown(article) gr.on( [run_button.click], fn=inference, inputs=[ seed, randomize_seed, input_im, aligned, upscale_factor, num_inference_steps, ], outputs=[result, file], show_api=False, # show_progress="minimal", ) # demo = gr.Interface( # inference, [ # gr.Image(type="filepath", label="Input"), # gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'), # gr.Slider(label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, value=2, step=0.1, interactive=True), # gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25), # ], [ # gr.ImageSlider(type="numpy", label="Input / Output", interactive=True), # gr.File(label="Download the output image") # ], # title=title, # description=description, # article=article, # ) demo.queue() demo.launch(state_session_capacity=15, show_api=False, share=False)