File size: 18,472 Bytes
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6588d53
deafbd7
 
 
 
 
6588d53
 
deafbd7
6588d53
deafbd7
 
 
 
 
 
 
 
 
6588d53
 
 
 
 
 
 
 
 
 
deafbd7
 
 
 
 
 
6588d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d2249
deafbd7
 
6588d53
deafbd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional

from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available


def pull_messages_from_step(
    step_log: MemoryStep,
):
    """Extract ChatMessage objects from agent steps with proper nesting"""
    import gradio as gr

    if isinstance(step_log, ActionStep):
        # Output the step number
        step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
        yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")

        # First yield the thought/reasoning from the LLM
        if hasattr(step_log, "model_output") and step_log.model_output is not None:
            # Clean up the LLM output
            model_output = step_log.model_output.strip()
            # Remove any trailing <end_code> and extra backticks, handling multiple possible formats
            model_output = re.sub(r"```\s*<end_code>", "```", model_output)  # handles ```<end_code>
            model_output = re.sub(r"<end_code>\s*```", "```", model_output)  # handles <end_code>```
            model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)  # handles ```\n<end_code>
            model_output = model_output.strip()
            yield gr.ChatMessage(role="assistant", content=model_output)

        # For tool calls, create a parent message
        if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
            first_tool_call = step_log.tool_calls[0]
            used_code = first_tool_call.name == "python_interpreter"
            parent_id = f"call_{len(step_log.tool_calls)}"

            # Tool call becomes the parent message with timing info
            # First we will handle arguments based on type
            args = first_tool_call.arguments
            if isinstance(args, dict):
                content = str(args.get("answer", str(args)))
            else:
                content = str(args).strip()

            if used_code:
                # Clean up the content by removing any end code tags
                content = re.sub(r"```.*?\n", "", content)  # Remove existing code blocks
                content = re.sub(r"\s*<end_code>\s*", "", content)  # Remove end_code tags
                content = content.strip()
                if not content.startswith("```python"):
                    content = f"```python\n{content}\n```"

            parent_message_tool = gr.ChatMessage(
                role="assistant",
                content=content,
                metadata={
                    "title": f"πŸ› οΈ Used tool {first_tool_call.name}",
                    "id": parent_id,
                    "status": "pending",
                },
            )
            yield parent_message_tool

            # Nesting execution logs under the tool call if they exist
            if hasattr(step_log, "observations") and (
                step_log.observations is not None and step_log.observations.strip()
            ):  # Only yield execution logs if there's actual content
                log_content = step_log.observations.strip()
                if log_content:
                    log_content = re.sub(r"^Execution logs:\s*", "", log_content)
                    yield gr.ChatMessage(
                        role="assistant",
                        content=f"{log_content}",
                        metadata={"title": "πŸ“ Execution Logs", "parent_id": parent_id, "status": "done"},
                    )

            # Nesting any errors under the tool call
            if hasattr(step_log, "error") and step_log.error is not None:
                yield gr.ChatMessage(
                    role="assistant",
                    content=str(step_log.error),
                    metadata={"title": "πŸ’₯ Error", "parent_id": parent_id, "status": "done"},
                )

            # Update parent message metadata to done status without yielding a new message
            parent_message_tool.metadata["status"] = "done"

        # Handle standalone errors but not from tool calls
        elif hasattr(step_log, "error") and step_log.error is not None:
            yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "πŸ’₯ Error"})

        # Calculate duration and token information
        step_footnote = f"{step_number}"
        if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
            token_str = (
                f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
            )
            step_footnote += token_str
        if hasattr(step_log, "duration"):
            step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
            step_footnote += step_duration
        step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
        yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
        yield gr.ChatMessage(role="assistant", content="-----")


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError(
            "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
        )
    import gradio as gr

    total_input_tokens = 0
    total_output_tokens = 0

    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        # Track tokens if model provides them
        if hasattr(agent.model, "last_input_token_count"):
            total_input_tokens += agent.model.last_input_token_count
            total_output_tokens += agent.model.last_output_token_count
            if isinstance(step_log, ActionStep):
                step_log.input_token_count = agent.model.last_input_token_count
                step_log.output_token_count = agent.model.last_output_token_count

        for message in pull_messages_from_step(
            step_log,
        ):
            yield message

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
        if not _is_package_available("gradio"):
            raise ModuleNotFoundError(
                "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
            )
        self.agent = agent
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)

    def interact_with_agent(self, prompt, messages):
        import gradio as gr

        messages.append(gr.ChatMessage(role="user", content=prompt))
        yield messages
        for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
            messages.append(msg)
            yield messages
        yield messages

    def upload_file(
        self,
        file,
        file_uploads_log,
        allowed_file_types=[
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain",
        ],
    ):
        """
        Handle file uploads, default allowed types are .pdf, .docx, and .txt
        """
        import gradio as gr

        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        # Ensure the extension correlates to the mime type
        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        # Save the uploaded file to the specified folder
        file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        return (
            text_input
            + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0
                else ""
            ),
            "",
        )

    def launch(self, **kwargs):
        import gradio as gr

        with gr.Blocks(fill_height=True) as demo:
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])
            chatbot = gr.Chatbot(
                label="πŸ’¬ Chat Window",
                type="messages",
                avatar_images=(
                    None,
                    "https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
                ),
                scale=5,  # Expands chat window
                show_copy_button=True
            )

            # If an upload folder is provided, enable the upload feature
            if self.file_upload_folder is not None:
                upload_file = gr.File(label="Upload a file")
                upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
                upload_file.change(
                    self.upload_file,
                    [upload_file, file_uploads_log],
                    [upload_status, file_uploads_log],
                )

            # ====== Chat Input with Placeholder Text & Enter Key Submission ====== #
            text_input = gr.Textbox(
                lines=1,
                label="πŸ’¬ Chat Message",
                placeholder="Type your message and press Enter to send...",
                interactive=True,
            )

            # Submit text when "Enter" is pressed
            text_input.submit(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input],
            ).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])

            # ====== Sample Prompt Buttons Inside the Chat Window ====== #
            with gr.Column(visible=True) as startup_buttons:
                gr.Markdown("### πŸ€– Get Started with a Quick Prompt")
                with gr.Row():
                    btn1 = gr.Button("✈️ Plan a Trip")
                    btn2 = gr.Button("🍽️ Find a Restaurant")
                    btn3 = gr.Button("πŸ’± Convert Currency")

            # When a button is clicked, fill input box and hide buttons
            def set_prompt(prompt):
                return prompt, gr.update(visible=False)  # Hide buttons

            btn1.click(lambda: set_prompt("I want to plan a trip from Toronto to Paris in May 2025. Can you find flights and suggest an itinerary?"), 
                       inputs=[], outputs=[text_input, startup_buttons])
            btn2.click(lambda: set_prompt("I'm visiting New York next weekend. Can you recommend some top-rated restaurants for dinner?"), 
                       inputs=[], outputs=[text_input, startup_buttons])
            btn3.click(lambda: set_prompt("Convert 500 USD to EUR and show me the exchange rate."), 
                       inputs=[], outputs=[text_input, startup_buttons])

            # ====== Additional Sample Prompts (Dropdown or Grid) ====== #
            with gr.Accordion("πŸ“Œ Default Prompts", open=False):
                with gr.Row():
                    pbtn1 = gr.Button("🏨 Find Hotels in Tokyo")
                    pbtn2 = gr.Button("🌦️ Check Weather in Paris")
                    pbtn3 = gr.Button("πŸš— Find Car Rentals")
                    pbtn4 = gr.Button("🎟️ Get Event Info")

                # Button Clicks - Additional Prompts
                pbtn1.click(lambda: "I need budget-friendly hotels in Tokyo for 5 nights. My budget is $100 per night.", inputs=[], outputs=text_input)
                pbtn2.click(lambda: "What is the weather forecast for Paris next week?", inputs=[], outputs=text_input)
                pbtn3.click(lambda: "Find me a car rental in Los Angeles for 3 days.", inputs=[], outputs=text_input)
                pbtn4.click(lambda: "What major events are happening in Berlin this month?", inputs=[], outputs=text_input)

            # ====== Toggle Checkboxes for Extra Info ====== #
            with gr.Row():
                show_smolagents_info = gr.Checkbox(label="What is SmolAgents?", value=False)
                show_agent_capabilities = gr.Checkbox(label="Capabilities & Limitations", value=False)

            # Expanding sections based on checkbox state
            smolagents_info = gr.Markdown("""
                ## 🌍 **What is SmolAgents?**
                Unlike a basic chat AI that provides single-step answers, **SmolAgents** enable dynamic, multi-step **reasoning and decision-making**.  

                - πŸ›  **Modular & Flexible:** SmolAgents **call different tools** when needed, giving you **step-by-step insights** rather than just final answers.
                - πŸ€– **Real-time Adaptability:** The AI **adjusts its approach based on intermediate results**, making it **more powerful than standard chatbots**.
                - πŸš€ **Build Quickly & Expand Easily:** SmolAgents provide a foundation for building **custom AI-powered workflows**, making it easy to **scale and adapt**.

                πŸ”Ή *Use this space to explore what’s possible! This AI isn't just answeringβ€”you can see how it reasons between steps and improves results.*  
            """, visible=False)

            agent_capabilities = gr.Markdown("""
                ## πŸ€– **Capabilities & Limitations**
                
                | **Tool Name**                         | **Function & API Used**                                         | **Limitations** | **Possible Improvements** |
                |--------------------------------------|----------------------------------------------------------------|----------------|---------------------------|
                | `search_flights(departure, destination, date)` ✈️ | **Finds flights** using DuckDuckGo. Queries available flights from departure to destination on a given date. | May not have real-time pricing | Integrate a flight API like Skyscanner |
                | `web_search(query)` πŸ”               | **Searches the web** using DuckDuckGo. Retrieves live data including news, events, and real-time updates. | Limited search results | Expand to use multiple search engines |
                | `visit_webpage(url)` 🌐              | **Scrapes web content**. Extracts ingredients and instructions from a recipe URL. | May not work on all websites | Add more scraping logic for better accuracy |
                | `convert_currency(amount, from_currency, to_currency)` πŸ’± | **Converts currency** via FreeCurrencyAPI. Fetches exchange rates and calculates conversions. | Requires API key, may have rate limits | Use a backup API in case of failures |
                | `get_current_time_in_timezone(timezone)` ⏰ | **Gets local time** in a specified timezone using the `pytz` library. | No offline functionality | Allow local fallback for time retrieval |
                | `chat_with_ai(message)` πŸ’¬           | **Maintains conversation memory**. Stores and retrieves chat history to provide context-aware responses. | Limited to 16,000 tokens | Implement memory chunking for longer conversations |
            """, visible=False)

            # Show/Hide sections based on checkbox state
            show_smolagents_info.change(lambda x: gr.update(visible=x), show_smolagents_info, smolagents_info)
            show_agent_capabilities.change(lambda x: gr.update(visible=x), show_agent_capabilities, agent_capabilities)

        demo.launch(debug=True, share=False, **kwargs)



__all__ = ["stream_to_gradio", "GradioUI"]