Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from sklearn.ensemble import IsolationForest
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.metrics import classification_report
|
8 |
+
|
9 |
+
# Streamlit app
|
10 |
+
st.title("Advanced Transaction Anomaly Detection")
|
11 |
+
|
12 |
+
# File uploader
|
13 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
|
14 |
+
|
15 |
+
if uploaded_file:
|
16 |
+
# Load the data
|
17 |
+
data = pd.read_csv(uploaded_file)
|
18 |
+
st.subheader("Dataset Preview")
|
19 |
+
st.write(data.head())
|
20 |
+
|
21 |
+
# Data Overview
|
22 |
+
st.subheader("Dataset Overview")
|
23 |
+
st.write("Missing Values:")
|
24 |
+
st.write(data.isnull().sum())
|
25 |
+
st.write("Descriptive Statistics:")
|
26 |
+
st.write(data.describe())
|
27 |
+
|
28 |
+
# Visualization 1: Histogram of Transaction Amount
|
29 |
+
if 'Transaction_Amount' in data.columns:
|
30 |
+
st.subheader("Transaction Amount Distribution")
|
31 |
+
fig_amount = px.histogram(data, x='Transaction_Amount', nbins=30, title="Transaction Amount Distribution")
|
32 |
+
st.plotly_chart(fig_amount)
|
33 |
+
|
34 |
+
# Visualization 2: Box Plot of Transaction Amount by Account Type
|
35 |
+
if 'Account_Type' in data.columns and 'Transaction_Amount' in data.columns:
|
36 |
+
st.subheader("Box Plot: Transaction Amount by Account Type")
|
37 |
+
fig_box = px.box(data, x='Account_Type', y='Transaction_Amount', title="Transaction Amount by Account Type")
|
38 |
+
st.plotly_chart(fig_box)
|
39 |
+
|
40 |
+
# Check if 'Day_of_Week' column exists
|
41 |
+
if 'Day_of_Week' in data.columns:
|
42 |
+
# Create bar chart for transactions by day of the week
|
43 |
+
fig_day_of_week = px.bar(data, x='Day_of_Week', title='Count of Transactions by Day of the Week')
|
44 |
+
|
45 |
+
# Display the chart in the Streamlit app
|
46 |
+
st.plotly_chart(fig_day_of_week)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
# Visualization 3: Correlation Heatmap (Plotly)
|
54 |
+
st.subheader("Correlation Heatmap")
|
55 |
+
numeric_cols = data.select_dtypes(include=['float64', 'int64'])
|
56 |
+
if not numeric_cols.empty:
|
57 |
+
corr_matrix = numeric_cols.corr()
|
58 |
+
fig_heatmap = go.Figure(data=go.Heatmap(
|
59 |
+
z=corr_matrix.values,
|
60 |
+
x=corr_matrix.columns,
|
61 |
+
y=corr_matrix.columns,
|
62 |
+
colorscale='Viridis',
|
63 |
+
hoverongaps=False,
|
64 |
+
))
|
65 |
+
fig_heatmap.update_layout(title="Correlation Heatmap", xaxis_title="Features", yaxis_title="Features")
|
66 |
+
st.plotly_chart(fig_heatmap)
|
67 |
+
|
68 |
+
# Visualization 4: Scatter Plot (Age vs Average Transaction Amount)
|
69 |
+
if 'Age' in data.columns and 'Average_Transaction_Amount' in data.columns:
|
70 |
+
st.subheader("Scatter Plot: Age vs Average Transaction Amount")
|
71 |
+
fig_scatter = px.scatter(data, x='Age',
|
72 |
+
y='Average_Transaction_Amount',
|
73 |
+
color='Account_Type',
|
74 |
+
title='Average Transaction Amount vs. Age',
|
75 |
+
trendline='ols')
|
76 |
+
st.plotly_chart(fig_scatter)
|
77 |
+
|
78 |
+
# Anomaly Detection with Isolation Forest
|
79 |
+
st.subheader("Anomaly Detection")
|
80 |
+
features = ['Transaction_Amount', 'Average_Transaction_Amount', 'Frequency_of_Transactions']
|
81 |
+
|
82 |
+
# Ensure all required features are in the dataset
|
83 |
+
if all(feature in data.columns for feature in features):
|
84 |
+
X = data[features]
|
85 |
+
|
86 |
+
# Train Isolation Forest
|
87 |
+
st.write("Training Isolation Forest model...")
|
88 |
+
model = IsolationForest(n_estimators=100, contamination=0.1, random_state=42)
|
89 |
+
model.fit(X)
|
90 |
+
|
91 |
+
# Add anomaly prediction column
|
92 |
+
data['anomaly'] = model.predict(X)
|
93 |
+
data['anomaly'] = data['anomaly'].apply(lambda x: 1 if x == -1 else 0)
|
94 |
+
|
95 |
+
# Display Results
|
96 |
+
st.write("Anomaly Detection Results:")
|
97 |
+
st.write(data[['anomaly']].value_counts())
|
98 |
+
|
99 |
+
# Visualization: Anomalies vs Normal Transactions
|
100 |
+
st.subheader("Anomalies vs Normal Transactions")
|
101 |
+
fig_anomalies = px.histogram(data, x='anomaly', title="Anomalies vs Normal Transactions",
|
102 |
+
labels={'anomaly': 'Anomaly (1) vs Normal (0)'})
|
103 |
+
st.plotly_chart(fig_anomalies)
|
104 |
+
|
105 |
+
# User Input for Prediction
|
106 |
+
st.subheader("Predict Anomaly for a New Transaction")
|
107 |
+
user_inputs = {}
|
108 |
+
for feature in features:
|
109 |
+
user_input = st.number_input(f"Enter the value for '{feature}':", value=0.0)
|
110 |
+
user_inputs[feature] = user_input
|
111 |
+
|
112 |
+
# Create a DataFrame from user inputs
|
113 |
+
user_df = pd.DataFrame([user_inputs])
|
114 |
+
|
115 |
+
# Predict anomalies using the model
|
116 |
+
user_anomaly_pred = model.predict(user_df)
|
117 |
+
user_anomaly_pred_binary = 1 if user_anomaly_pred[0] == -1 else 0
|
118 |
+
|
119 |
+
if user_anomaly_pred_binary == 1:
|
120 |
+
st.error("Anomaly detected: This transaction is flagged as an anomaly.")
|
121 |
+
else:
|
122 |
+
st.success("No anomaly detected: This transaction is normal.")
|
123 |
+
else:
|
124 |
+
st.error("Required features for anomaly detection are missing in the dataset.")
|