Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,324 Bytes
89a49d8 00c2c78 89a49d8 00c2c78 89a49d8 00c2c78 89a49d8 00c2c78 89a49d8 00c2c78 89a49d8 00c2c78 89a49d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
from omni_zero import OmniZeroSingle
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
# self.model = torch.load("./weights.pth")
self.omni_zero = OmniZeroSingle(
base_model="frankjoshua/albedobaseXL_v13",
)
def predict(
self,
seed: int = Input(description="Random seed for the model", default=42),
prompt: str = Input(description="Prompt for the model", default="A person"),
negative_prompt: str = Input(description="Negative prompt for the model", default="blurry, out of focus"),
guidance_scale: float = Input(description="Guidance scale for the model", default=3.0, ge=0.0, le=14.0),
number_of_images: int = Input(description="Number of images to generate", default=1, ge=1, le=4),
number_of_steps: int = Input(description="Number of steps for the model", default=10, ge=1, le=50),
base_image: Path = Input(description="Base image for the model"),
base_image_strength: float = Input(description="Base image strength for the model", default=0.15, ge=0.0, le=1.0),
composition_image: Path = Input(description="Composition image for the model"),
composition_image_strength: float = Input(description="Composition image strength for the model", default=1.0, ge=0.0, le=1.0),
style_image: Path = Input(description="Style image for the model"),
style_image_strength: float = Input(description="Style image strength for the model", default=1.0, ge=0.0, le=1.0),
identity_image: Path = Input(description="Identity image for the model"),
identity_image_strength: float = Input(description="Identity image strength for the model", default=1.0, ge=0.0, le=1.0),
depth_image: Path = Input(description="Depth image for the model", default=None),
depth_image_strength: float = Input(description="Depth image strength for the model, if not supplied the composition image will be used for depth", default=0.5, ge=0.0, le=1.0),
) -> Path:
"""Run a single prediction on the model"""
images = self.omni_zero.generate(
seed=seed,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
number_of_images=number_of_images,
number_of_steps=number_of_steps,
base_image=str(base_image),
base_image_strength=base_image_strength,
composition_image=str(composition_image),
composition_image_strength=composition_image_strength,
style_image=str(style_image),
style_image_strength=style_image_strength,
identity_image=str(identity_image),
identity_image_strength=identity_image_strength,
depth_image=str(depth_image),
depth_image_strength=depth_image_strength,
)
outputs = []
for i, image in enumerate(images):
output_path = f"oz_output_{i}.jpg"
image.save(output_path)
outputs.append(Path(output_path))
return outputs |