Spaces:
Running
on
Zero
Running
on
Zero
# Prediction interface for Cog ⚙️ | |
# https://github.com/replicate/cog/blob/main/docs/python.md | |
from cog import BasePredictor, Input, Path | |
from typing import List | |
from omni_zero import OmniZeroSingle | |
from PIL import Image | |
class Predictor(BasePredictor): | |
def setup(self): | |
"""Load the model into memory to make running multiple predictions efficient""" | |
# self.model = torch.load("./weights.pth") | |
self.omni_zero = OmniZeroSingle( | |
base_model="frankjoshua/albedobaseXL_v13", | |
) | |
def predict( | |
self, | |
seed: int = Input(description="Random seed for the model", default=42), | |
prompt: str = Input(description="Prompt for the model", default="A person"), | |
negative_prompt: str = Input(description="Negative prompt for the model", default="blurry, out of focus"), | |
guidance_scale: float = Input(description="Guidance scale for the model", default=3.0, ge=0.0, le=14.0), | |
number_of_images: int = Input(description="Number of images to generate", default=1, ge=1, le=4), | |
number_of_steps: int = Input(description="Number of steps for the model", default=10, ge=1, le=50), | |
image_url: Path = Input(description="Base image for the model"), | |
image_strength: float = Input(description="Base image strength for the model", default=0.15, ge=0.0, le=1.0), | |
composition_image_url: Path = Input(description="Composition image for the model"), | |
composition_strength: float = Input(description="Composition image strength for the model", default=1.0, ge=0.0, le=1.0), | |
style_image_url: Path = Input(description="Style image for the model"), | |
style_strength: float = Input(description="Style image strength for the model", default=1.0, ge=0.0, le=1.0), | |
identity_image_url: Path = Input(description="Identity image for the model"), | |
identity_strength: float = Input(description="Identity image strength for the model", default=1.0, ge=0.0, le=1.0), | |
depth_image_url: Path = Input(description="Depth image for the model", default=None), | |
depth_image_strength: float = Input(description="Depth image strength for the model, if not supplied the composition image will be used for depth", default=0.5, ge=0.0, le=1.0), | |
) -> List[Path]: | |
"""Run a single prediction on the model""" | |
base_image = Image.open(image_url) | |
composition_image = Image.open(composition_image_url) | |
style_image = Image.open(style_image_url) | |
identity_image = Image.open(identity_image_url) | |
if depth_image_url is not None: | |
depth_image = Image.open(depth_image_url) | |
else: | |
depth_image = None | |
images = self.omni_zero.generate( | |
seed=seed, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
number_of_images=number_of_images, | |
number_of_steps=number_of_steps, | |
base_image=base_image, | |
base_image_strength=image_strength, | |
composition_image=composition_image, | |
composition_image_strength=composition_strength, | |
style_image=style_image, | |
style_image_strength=style_strength, | |
identity_image=identity_image, | |
identity_image_strength=identity_strength, | |
depth_image=depth_image, | |
depth_image_strength=depth_image_strength, | |
) | |
outputs = [] | |
for i, image in enumerate(images): | |
output_path = f"oz_output_{i}.jpg" | |
image.save(output_path) | |
outputs.append(Path(output_path)) | |
return outputs |