Spaces:
Build error
Build error
oliverlevn
commited on
Commit
·
ade0106
1
Parent(s):
01ecd1d
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as T
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import PIL.Image as Image
|
9 |
+
import time
|
10 |
+
from model import create_fasterrcnn_model
|
11 |
+
|
12 |
+
categories = [
|
13 |
+
{
|
14 |
+
"id": 0,
|
15 |
+
"name": "creatures",
|
16 |
+
"supercategory": "none"
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"id": 1,
|
20 |
+
"name": "fish",
|
21 |
+
"supercategory": "creatures"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"id": 2,
|
25 |
+
"name": "jellyfish",
|
26 |
+
"supercategory": "creatures"
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"id": 3,
|
30 |
+
"name": "penguin",
|
31 |
+
"supercategory": "creatures"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 4,
|
35 |
+
"name": "puffin",
|
36 |
+
"supercategory": "creatures"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"id": 5,
|
40 |
+
"name": "shark",
|
41 |
+
"supercategory": "creatures"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"id": 6,
|
45 |
+
"name": "starfish",
|
46 |
+
"supercategory": "creatures"
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"id": 7,
|
50 |
+
"name": "stingray",
|
51 |
+
"supercategory": "creatures"
|
52 |
+
}
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# 1, Create title, description and article strings
|
58 |
+
title = "Ocean creatures detection Faster-R-CNN"
|
59 |
+
description = "A Faster-RCNN-ResNet-50 backbone feature extractor computer vision model to classify images of fish, penguin, shark, etc"
|
60 |
+
|
61 |
+
faster_rcnn = create_fasterrcnn_model(
|
62 |
+
num_classes=8, # len(class_names) would also work
|
63 |
+
)
|
64 |
+
|
65 |
+
# Load saved weights
|
66 |
+
faster_rcnn.load_state_dict(
|
67 |
+
torch.load(
|
68 |
+
f="./third_train.pth",
|
69 |
+
map_location=torch.device("cpu"), # load to CPU
|
70 |
+
)
|
71 |
+
)
|
72 |
+
import random
|
73 |
+
# Create predict function
|
74 |
+
def predict(img):
|
75 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
76 |
+
"""
|
77 |
+
# Start the timer
|
78 |
+
start_time = time.time()
|
79 |
+
device = 'cpu'
|
80 |
+
transform = T.Compose([T.ToPILImage(), T.Resize(size = (768,1024)),T.ToTensor()])
|
81 |
+
image_tensor = transform(img).to(device)
|
82 |
+
image_tensor = image_tensor.unsqueeze(0)
|
83 |
+
faster_rcnn.eval()
|
84 |
+
with torch.no_grad():
|
85 |
+
predictions = faster_rcnn(image_tensor)
|
86 |
+
pred_boxes = predictions[0]['boxes'].cpu().numpy()
|
87 |
+
pred_scores = predictions[0]['scores'].cpu().numpy()
|
88 |
+
pred_labels = predictions[0]['labels'].cpu().numpy()
|
89 |
+
label_names = [categories[label]['name'] for label in pred_labels]
|
90 |
+
fig, ax = plt.subplots(1)
|
91 |
+
ax.imshow(img)
|
92 |
+
for box, score, label_name in zip(pred_boxes, pred_scores, label_names):
|
93 |
+
if score > 0.5:
|
94 |
+
x1, y1, x2, y2 = box
|
95 |
+
w, h = x2 - x1, y2 - y1
|
96 |
+
rect = plt.Rectangle((x1, y1), w, h, fill=False, edgecolor='red', linewidth=2)
|
97 |
+
ax.add_patch(rect)
|
98 |
+
ax.text(x1, y1, f'{label_name}: {score:.2f}', fontsize=5, color='white', bbox=dict(facecolor='red', alpha=0.2))
|
99 |
+
# save the figure to an image file
|
100 |
+
random_name = str(random.randint(0,99))
|
101 |
+
img_path = f"./{random_name}.png"
|
102 |
+
fig.savefig(img_path)
|
103 |
+
# convert the figure to an image
|
104 |
+
fig.canvas.draw()
|
105 |
+
|
106 |
+
# Calculate the prediction time
|
107 |
+
pred_time = round(time.time() - start_time, 5)
|
108 |
+
|
109 |
+
# return the predicted label, the path to the saved image, and the prediction time
|
110 |
+
return img_path, str(pred_time)
|
111 |
+
|
112 |
+
|
113 |
+
### 4. Gradio app ###
|
114 |
+
|
115 |
+
# Get a list of all image file paths in the folder
|
116 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
117 |
+
|
118 |
+
|
119 |
+
# Create the Gradio demo
|
120 |
+
demo = gradio.Interface(fn=predict, # mapping function from input to output
|
121 |
+
inputs=gradio.Image(type= "numpy"), # what are the inputs?
|
122 |
+
outputs=[gradio.outputs.Image(type= "filepath", label="Image with Bounding Boxes"),
|
123 |
+
gradio.outputs.Label(type="auto", label="Prediction Time", formatter=format_time_output)], # our fn has two outputs
|
124 |
+
# Create examples list from "examples/" directory
|
125 |
+
examples=example_list,
|
126 |
+
title=title,
|
127 |
+
description=description)
|
128 |
+
|
129 |
+
# Launch the demo!
|
130 |
+
demo.launch(debug =True)
|