Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
import os | |
import json | |
from tqdm import tqdm | |
from glob import glob | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
from tensorflow.keras import layers, models, optimizers | |
from custom_layers import yolov4_neck, yolov4_head, nms | |
from utils import load_weights, get_detection_data, draw_bbox, voc_ap, draw_plot_func, read_txt_to_list | |
from config import yolo_config | |
from loss import yolo_loss | |
class Yolov4(object): | |
def __init__(self, | |
weight_path=None, | |
class_name_path='coco_classes.txt', | |
config=yolo_config, | |
): | |
assert config['img_size'][0] == config['img_size'][1], 'not support yet' | |
assert config['img_size'][0] % config['strides'][-1] == 0, 'must be a multiple of last stride' | |
self.class_names = [line.strip() for line in open(class_name_path).readlines()] | |
self.img_size = yolo_config['img_size'] | |
self.num_classes = len(self.class_names) | |
self.weight_path = weight_path | |
self.anchors = np.array(yolo_config['anchors']).reshape((3, 3, 2)) | |
self.xyscale = yolo_config['xyscale'] | |
self.strides = yolo_config['strides'] | |
self.output_sizes = [self.img_size[0] // s for s in self.strides] | |
self.class_color = {name: list(np.random.random(size=3)*255) for name in self.class_names} | |
# Training | |
self.max_boxes = yolo_config['max_boxes'] | |
self.iou_loss_thresh = yolo_config['iou_loss_thresh'] | |
self.config = yolo_config | |
assert self.num_classes > 0, 'no classes detected!' | |
tf.keras.backend.clear_session() | |
if yolo_config['num_gpu'] > 1: | |
mirrored_strategy = tf.distribute.MirroredStrategy() | |
with mirrored_strategy.scope(): | |
self.build_model(load_pretrained=True if self.weight_path else False) | |
else: | |
self.build_model(load_pretrained=True if self.weight_path else False) | |
def build_model(self, load_pretrained=True): | |
# core yolo model | |
input_layer = layers.Input(self.img_size) | |
yolov4_output = yolov4_neck(input_layer, self.num_classes) | |
self.yolo_model = models.Model(input_layer, yolov4_output) | |
# Build training model | |
y_true = [ | |
layers.Input(name='input_2', shape=(52, 52, 3, (self.num_classes + 5))), # label small boxes | |
layers.Input(name='input_3', shape=(26, 26, 3, (self.num_classes + 5))), # label medium boxes | |
layers.Input(name='input_4', shape=(13, 13, 3, (self.num_classes + 5))), # label large boxes | |
layers.Input(name='input_5', shape=(self.max_boxes, 4)), # true bboxes | |
] | |
loss_list = tf.keras.layers.Lambda(yolo_loss, name='yolo_loss', | |
arguments={'num_classes': self.num_classes, | |
'iou_loss_thresh': self.iou_loss_thresh, | |
'anchors': self.anchors})([*self.yolo_model.output, *y_true]) | |
self.training_model = models.Model([self.yolo_model.input, *y_true], loss_list) | |
# Build inference model | |
yolov4_output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale) | |
# output: [boxes, scores, classes, valid_detections] | |
self.inference_model = models.Model(input_layer, | |
nms(yolov4_output, self.img_size, self.num_classes, | |
iou_threshold=self.config['iou_threshold'], | |
score_threshold=self.config['score_threshold'])) | |
if load_pretrained and self.weight_path and self.weight_path.endswith('.weights'): | |
if self.weight_path.endswith('.weights'): | |
load_weights(self.yolo_model, self.weight_path) | |
print(f'load from {self.weight_path}') | |
elif self.weight_path.endswith('.h5'): | |
self.training_model.load_weights(self.weight_path) | |
print(f'load from {self.weight_path}') | |
self.training_model.compile(optimizer=optimizers.Adam(lr=1e-3), | |
loss={'yolo_loss': lambda y_true, y_pred: y_pred}) | |
def load_model(self, path): | |
self.yolo_model = models.load_model(path, compile=False) | |
yolov4_output = yolov4_head(self.yolo_model.output, self.num_classes, self.anchors, self.xyscale) | |
self.inference_model = models.Model(self.yolo_model.input, | |
nms(yolov4_output, self.img_size, self.num_classes)) # [boxes, scores, classes, valid_detections] | |
def save_model(self, path): | |
self.yolo_model.save(path) | |
def preprocess_img(self, img): | |
img = cv2.resize(img, self.img_size[:2]) | |
img = img / 255. | |
return img | |
def fit(self, train_data_gen, epochs, val_data_gen=None, initial_epoch=0, callbacks=None): | |
self.training_model.fit(train_data_gen, | |
steps_per_epoch=len(train_data_gen), | |
validation_data=val_data_gen, | |
validation_steps=len(val_data_gen), | |
epochs=epochs, | |
callbacks=callbacks, | |
initial_epoch=initial_epoch) | |
# raw_img: RGB | |
def predict_img(self, raw_img, random_color=True, plot_img=True, figsize=(10, 10), show_text=True, return_output=True): | |
print('img shape: ', raw_img.shape) | |
img = self.preprocess_img(raw_img) | |
imgs = np.expand_dims(img, axis=0) | |
pred_output = self.inference_model.predict(imgs) | |
detections = get_detection_data(img=raw_img, | |
model_outputs=pred_output, | |
class_names=self.class_names) | |
output_img = draw_bbox(raw_img, detections, cmap=self.class_color, random_color=random_color, figsize=figsize, | |
show_text=show_text, show_img=False) | |
if return_output: | |
return output_img, detections | |
else: | |
return detections | |
def predict(self, img_path, random_color=True, plot_img=True, figsize=(10, 10), show_text=True): | |
raw_img = img_path | |
return self.predict_img(raw_img, random_color, plot_img, figsize, show_text) | |
def export_gt(self, annotation_path, gt_folder_path): | |
with open(annotation_path) as file: | |
for line in file: | |
line = line.split(' ') | |
filename = line[0].split(os.sep)[-1].split('.')[0] | |
objs = line[1:] | |
# export txt file | |
with open(os.path.join(gt_folder_path, filename + '.txt'), 'w') as output_file: | |
for obj in objs: | |
x_min, y_min, x_max, y_max, class_id = [float(o) for o in obj.strip().split(',')] | |
output_file.write(f'{self.class_names[int(class_id)]} {x_min} {y_min} {x_max} {y_max}\n') | |
def export_prediction(self, annotation_path, pred_folder_path, img_folder_path, bs=2): | |
with open(annotation_path) as file: | |
img_paths = [os.path.join(img_folder_path, line.split(' ')[0].split(os.sep)[-1]) for line in file] | |
# print(img_paths[:20]) | |
for batch_idx in tqdm(range(0, len(img_paths), bs)): | |
# print(len(img_paths), batch_idx, batch_idx*bs, (batch_idx+1)*bs) | |
paths = img_paths[batch_idx:batch_idx+bs] | |
# print(paths) | |
# read and process img | |
imgs = np.zeros((len(paths), *self.img_size)) | |
raw_img_shapes = [] | |
for j, path in enumerate(paths): | |
img = cv2.imread(path) | |
raw_img_shapes.append(img.shape) | |
img = self.preprocess_img(img) | |
imgs[j] = img | |
# process batch output | |
b_boxes, b_scores, b_classes, b_valid_detections = self.inference_model.predict(imgs) | |
for k in range(len(paths)): | |
num_boxes = b_valid_detections[k] | |
raw_img_shape = raw_img_shapes[k] | |
boxes = b_boxes[k, :num_boxes] | |
classes = b_classes[k, :num_boxes] | |
scores = b_scores[k, :num_boxes] | |
# print(raw_img_shape) | |
boxes[:, [0, 2]] = (boxes[:, [0, 2]] * raw_img_shape[1]) # w | |
boxes[:, [1, 3]] = (boxes[:, [1, 3]] * raw_img_shape[0]) # h | |
cls_names = [self.class_names[int(c)] for c in classes] | |
# print(raw_img_shape, boxes.astype(int), cls_names, scores) | |
img_path = paths[k] | |
filename = img_path.split(os.sep)[-1].split('.')[0] | |
# print(filename) | |
output_path = os.path.join(pred_folder_path, filename+'.txt') | |
with open(output_path, 'w') as pred_file: | |
for box_idx in range(num_boxes): | |
b = boxes[box_idx] | |
pred_file.write(f'{cls_names[box_idx]} {scores[box_idx]} {b[0]} {b[1]} {b[2]} {b[3]}\n') | |
def eval_map(self, gt_folder_path, pred_folder_path, temp_json_folder_path, output_files_path): | |
"""Process Gt""" | |
ground_truth_files_list = glob(gt_folder_path + '/*.txt') | |
assert len(ground_truth_files_list) > 0, 'no ground truth file' | |
ground_truth_files_list.sort() | |
# dictionary with counter per class | |
gt_counter_per_class = {} | |
counter_images_per_class = {} | |
gt_files = [] | |
for txt_file in ground_truth_files_list: | |
file_id = txt_file.split(".txt", 1)[0] | |
file_id = os.path.basename(os.path.normpath(file_id)) | |
# check if there is a correspondent detection-results file | |
temp_path = os.path.join(pred_folder_path, (file_id + ".txt")) | |
assert os.path.exists(temp_path), "Error. File not found: {}\n".format(temp_path) | |
lines_list = read_txt_to_list(txt_file) | |
# create ground-truth dictionary | |
bounding_boxes = [] | |
is_difficult = False | |
already_seen_classes = [] | |
for line in lines_list: | |
class_name, left, top, right, bottom = line.split() | |
# check if class is in the ignore list, if yes skip | |
bbox = left + " " + top + " " + right + " " + bottom | |
bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False}) | |
# count that object | |
if class_name in gt_counter_per_class: | |
gt_counter_per_class[class_name] += 1 | |
else: | |
# if class didn't exist yet | |
gt_counter_per_class[class_name] = 1 | |
if class_name not in already_seen_classes: | |
if class_name in counter_images_per_class: | |
counter_images_per_class[class_name] += 1 | |
else: | |
# if class didn't exist yet | |
counter_images_per_class[class_name] = 1 | |
already_seen_classes.append(class_name) | |
# dump bounding_boxes into a ".json" file | |
new_temp_file = os.path.join(temp_json_folder_path, file_id+"_ground_truth.json") #TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" | |
gt_files.append(new_temp_file) | |
with open(new_temp_file, 'w') as outfile: | |
json.dump(bounding_boxes, outfile) | |
gt_classes = list(gt_counter_per_class.keys()) | |
# let's sort the classes alphabetically | |
gt_classes = sorted(gt_classes) | |
n_classes = len(gt_classes) | |
print(gt_classes, gt_counter_per_class) | |
"""Process prediction""" | |
dr_files_list = sorted(glob(os.path.join(pred_folder_path, '*.txt'))) | |
for class_index, class_name in enumerate(gt_classes): | |
bounding_boxes = [] | |
for txt_file in dr_files_list: | |
# the first time it checks if all the corresponding ground-truth files exist | |
file_id = txt_file.split(".txt", 1)[0] | |
file_id = os.path.basename(os.path.normpath(file_id)) | |
temp_path = os.path.join(gt_folder_path, (file_id + ".txt")) | |
if class_index == 0: | |
if not os.path.exists(temp_path): | |
error_msg = f"Error. File not found: {temp_path}\n" | |
print(error_msg) | |
lines = read_txt_to_list(txt_file) | |
for line in lines: | |
try: | |
tmp_class_name, confidence, left, top, right, bottom = line.split() | |
except ValueError: | |
error_msg = f"""Error: File {txt_file} in the wrong format.\n | |
Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n | |
Received: {line} \n""" | |
print(error_msg) | |
if tmp_class_name == class_name: | |
# print("match") | |
bbox = left + " " + top + " " + right + " " + bottom | |
bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox}) | |
# sort detection-results by decreasing confidence | |
bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True) | |
with open(temp_json_folder_path + "/" + class_name + "_dr.json", 'w') as outfile: | |
json.dump(bounding_boxes, outfile) | |
""" | |
Calculate the AP for each class | |
""" | |
sum_AP = 0.0 | |
ap_dictionary = {} | |
# open file to store the output | |
with open(output_files_path + "/output.txt", 'w') as output_file: | |
output_file.write("# AP and precision/recall per class\n") | |
count_true_positives = {} | |
for class_index, class_name in enumerate(gt_classes): | |
count_true_positives[class_name] = 0 | |
""" | |
Load detection-results of that class | |
""" | |
dr_file = temp_json_folder_path + "/" + class_name + "_dr.json" | |
dr_data = json.load(open(dr_file)) | |
""" | |
Assign detection-results to ground-truth objects | |
""" | |
nd = len(dr_data) | |
tp = [0] * nd # creates an array of zeros of size nd | |
fp = [0] * nd | |
for idx, detection in enumerate(dr_data): | |
file_id = detection["file_id"] | |
gt_file = temp_json_folder_path + "/" + file_id + "_ground_truth.json" | |
ground_truth_data = json.load(open(gt_file)) | |
ovmax = -1 | |
gt_match = -1 | |
# load detected object bounding-box | |
bb = [float(x) for x in detection["bbox"].split()] | |
for obj in ground_truth_data: | |
# look for a class_name match | |
if obj["class_name"] == class_name: | |
bbgt = [float(x) for x in obj["bbox"].split()] | |
bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])] | |
iw = bi[2] - bi[0] + 1 | |
ih = bi[3] - bi[1] + 1 | |
if iw > 0 and ih > 0: | |
# compute overlap (IoU) = area of intersection / area of union | |
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + \ | |
(bbgt[2] - bbgt[0]+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih | |
ov = iw * ih / ua | |
if ov > ovmax: | |
ovmax = ov | |
gt_match = obj | |
min_overlap = 0.5 | |
if ovmax >= min_overlap: | |
# if "difficult" not in gt_match: | |
if not bool(gt_match["used"]): | |
# true positive | |
tp[idx] = 1 | |
gt_match["used"] = True | |
count_true_positives[class_name] += 1 | |
# update the ".json" file | |
with open(gt_file, 'w') as f: | |
f.write(json.dumps(ground_truth_data)) | |
else: | |
# false positive (multiple detection) | |
fp[idx] = 1 | |
else: | |
fp[idx] = 1 | |
# compute precision/recall | |
cumsum = 0 | |
for idx, val in enumerate(fp): | |
fp[idx] += cumsum | |
cumsum += val | |
print('fp ', cumsum) | |
cumsum = 0 | |
for idx, val in enumerate(tp): | |
tp[idx] += cumsum | |
cumsum += val | |
print('tp ', cumsum) | |
rec = tp[:] | |
for idx, val in enumerate(tp): | |
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name] | |
print('recall ', cumsum) | |
prec = tp[:] | |
for idx, val in enumerate(tp): | |
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx]) | |
print('prec ', cumsum) | |
ap, mrec, mprec = voc_ap(rec[:], prec[:]) | |
sum_AP += ap | |
text = "{0:.2f}%".format( | |
ap * 100) + " = " + class_name + " AP " # class_name + " AP = {0:.2f}%".format(ap*100) | |
print(text) | |
ap_dictionary[class_name] = ap | |
n_images = counter_images_per_class[class_name] | |
# lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images) | |
# lamr_dictionary[class_name] = lamr | |
""" | |
Draw plot | |
""" | |
if True: | |
plt.plot(rec, prec, '-o') | |
# add a new penultimate point to the list (mrec[-2], 0.0) | |
# since the last line segment (and respective area) do not affect the AP value | |
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]] | |
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]] | |
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r') | |
# set window title | |
fig = plt.gcf() # gcf - get current figure | |
fig.canvas.set_window_title('AP ' + class_name) | |
# set plot title | |
plt.title('class: ' + text) | |
# plt.suptitle('This is a somewhat long figure title', fontsize=16) | |
# set axis titles | |
plt.xlabel('Recall') | |
plt.ylabel('Precision') | |
# optional - set axes | |
axes = plt.gca() # gca - get current axes | |
axes.set_xlim([0.0, 1.0]) | |
axes.set_ylim([0.0, 1.05]) # .05 to give some extra space | |
# Alternative option -> wait for button to be pressed | |
# while not plt.waitforbuttonpress(): pass # wait for key display | |
# Alternative option -> normal display | |
plt.show() | |
# save the plot | |
# fig.savefig(output_files_path + "/classes/" + class_name + ".png") | |
# plt.cla() # clear axes for next plot | |
# if show_animation: | |
# cv2.destroyAllWindows() | |
output_file.write("\n# mAP of all classes\n") | |
mAP = sum_AP / n_classes | |
text = "mAP = {0:.2f}%".format(mAP * 100) | |
output_file.write(text + "\n") | |
print(text) | |
""" | |
Count total of detection-results | |
""" | |
# iterate through all the files | |
det_counter_per_class = {} | |
for txt_file in dr_files_list: | |
# get lines to list | |
lines_list = read_txt_to_list(txt_file) | |
for line in lines_list: | |
class_name = line.split()[0] | |
# check if class is in the ignore list, if yes skip | |
# if class_name in args.ignore: | |
# continue | |
# count that object | |
if class_name in det_counter_per_class: | |
det_counter_per_class[class_name] += 1 | |
else: | |
# if class didn't exist yet | |
det_counter_per_class[class_name] = 1 | |
# print(det_counter_per_class) | |
dr_classes = list(det_counter_per_class.keys()) | |
""" | |
Plot the total number of occurences of each class in the ground-truth | |
""" | |
if True: | |
window_title = "ground-truth-info" | |
plot_title = "ground-truth\n" | |
plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)" | |
x_label = "Number of objects per class" | |
output_path = output_files_path + "/ground-truth-info.png" | |
to_show = False | |
plot_color = 'forestgreen' | |
draw_plot_func( | |
gt_counter_per_class, | |
n_classes, | |
window_title, | |
plot_title, | |
x_label, | |
output_path, | |
to_show, | |
plot_color, | |
'', | |
) | |
""" | |
Finish counting true positives | |
""" | |
for class_name in dr_classes: | |
# if class exists in detection-result but not in ground-truth then there are no true positives in that class | |
if class_name not in gt_classes: | |
count_true_positives[class_name] = 0 | |
# print(count_true_positives) | |
""" | |
Plot the total number of occurences of each class in the "detection-results" folder | |
""" | |
if True: | |
window_title = "detection-results-info" | |
# Plot title | |
plot_title = "detection-results\n" | |
plot_title += "(" + str(len(dr_files_list)) + " files and " | |
count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values())) | |
plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)" | |
# end Plot title | |
x_label = "Number of objects per class" | |
output_path = output_files_path + "/detection-results-info.png" | |
to_show = False | |
plot_color = 'forestgreen' | |
true_p_bar = count_true_positives | |
draw_plot_func( | |
det_counter_per_class, | |
len(det_counter_per_class), | |
window_title, | |
plot_title, | |
x_label, | |
output_path, | |
to_show, | |
plot_color, | |
true_p_bar | |
) | |
""" | |
Draw mAP plot (Show AP's of all classes in decreasing order) | |
""" | |
if True: | |
window_title = "mAP" | |
plot_title = "mAP = {0:.2f}%".format(mAP * 100) | |
x_label = "Average Precision" | |
output_path = output_files_path + "/mAP.png" | |
to_show = True | |
plot_color = 'royalblue' | |
draw_plot_func( | |
ap_dictionary, | |
n_classes, | |
window_title, | |
plot_title, | |
x_label, | |
output_path, | |
to_show, | |
plot_color, | |
"" | |
) | |
def predict_raw(self, img_path): | |
raw_img = cv2.imread(img_path) | |
print('img shape: ', raw_img.shape) | |
img = self.preprocess_img(raw_img) | |
imgs = np.expand_dims(img, axis=0) | |
return self.yolo_model.predict(imgs) | |
def predict_nonms(self, img_path, iou_threshold=0.413, score_threshold=0.1): | |
raw_img = cv2.imread(img_path) | |
print('img shape: ', raw_img.shape) | |
img = self.preprocess_img(raw_img) | |
imgs = np.expand_dims(img, axis=0) | |
yolov4_output = self.yolo_model.predict(imgs) | |
output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale) | |
pred_output = nms(output, self.img_size, self.num_classes, iou_threshold, score_threshold) | |
pred_output = [p.numpy() for p in pred_output] | |
detections = get_detection_data(img=raw_img, | |
model_outputs=pred_output, | |
class_names=self.class_names) | |
draw_bbox(raw_img, detections, cmap=self.class_color, random_color=True) | |
return detections | |