Spaces:
Runtime error
Runtime error
File size: 6,319 Bytes
309b3ae 18e8059 309b3ae 18e8059 309b3ae cef6856 309b3ae cef6856 5a17ea7 5eb1119 cef6856 5a17ea7 309b3ae cef6856 df5cff8 5eb1119 28ca5af 5eb1119 28ca5af 5eb1119 28ca5af 1714be9 5eb1119 cef6856 5eb1119 fc4ec13 5eb1119 5a17ea7 5eb1119 5a17ea7 cef6856 309b3ae 5eb1119 309b3ae 6b4fcfb cef6856 309b3ae 5eb1119 309b3ae 54bcaed 309b3ae cef6856 1c7143b 5eb1119 cef6856 5a17ea7 a27464f 5eb1119 cef6856 309b3ae a7825fb 309b3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def detect_objects(model_name,url_input,image_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
xxresult=0
def detect_objects2(model_name,url_input,image_input,threshold,type2):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
keep = processed_outputs["scores"] > threshold
det_lab = processed_outputs["labels"][keep].tolist()
det_lab.count(1)
if det_lab.count(1) > 0:
total_text="Trench is Detected \n Not Blurry \n"
else:
total_text="Trench is NOT Detected \n Blurry \n"
xxresult=1
print(type2)
print(type(type2))
if det_lab.count(4) > 0:
total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
else:
total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
if type2=="Trench Depth Measurement":
xxresult=1
if det_lab.count(5) > 0:
total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
else:
total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
if type2=="Trench Width Measurement":
xxresult=1
return total_text
def tott():
if xxresult==0:
text2 = "The photo is ACCEPTED"
else:
text2 = "The photo is NOT ACCEPTED"
return text2
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0])
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
"""
models = ["omarhkh/detr-finetuned-omar8"]
types_class = ["Trench Depth Measurement", "Trench Width Measurement"]
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
#gr.Markdown(detect_objects2)
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
options2 = gr.Dropdown(choices=types_class,label='Select Classification Type',show_label=True)
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(shape=(650,650))
with gr.Row():
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
img_but = gr.Button('Detect')
with gr.Blocks():
name = gr.Textbox(label="Final Result")
output = gr.Textbox(label="Reason for the results")
greet_btn = gr.Button("Results")
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
greet_btn.click(fn=tott, inputs=[], outputs=name, queue=True)
img_but.click(detect_objects,inputs=[options,img_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
demo.launch(enable_queue=True) |