Spaces:
Runtime error
Runtime error
File size: 6,984 Bytes
309b3ae 18e8059 309b3ae 18e8059 309b3ae 354d7fa 309b3ae cef6856 309b3ae cef6856 5a17ea7 5eb1119 cef6856 5a17ea7 309b3ae cef6856 df5cff8 5eb1119 806b7a6 a7f8398 5eb1119 02c19a7 3c7e098 28ca5af 1714be9 5eb1119 cef6856 5eb1119 fc4ec13 3c7e098 5eb1119 3c7e098 5a17ea7 3c7e098 29a2cac 7f71b90 9fe6ece 7f71b90 9fe6ece 7f71b90 3c7e098 5eb1119 d23c7fe 5eb1119 d23c7fe 3c7e098 cef6856 309b3ae 02c19a7 309b3ae 7f71b90 02c19a7 7f71b90 309b3ae 5f2cd28 5eb1119 309b3ae 6b4fcfb cef6856 309b3ae 8ae5642 841c4ef 309b3ae 54bcaed 309b3ae cef6856 1c7143b 5eb1119 cef6856 5a17ea7 ab38b1e 5eb1119 cef6856 309b3ae a7825fb 309b3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.8, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def detect_objects(model_name,url_input,image_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
xxresult=0
def detect_objects2(model_name,url_input,image_input,threshold,type2):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
keep = processed_outputs["scores"] > threshold
det_lab = processed_outputs["labels"][keep].tolist()
det_lab.count(6)
if det_lab.count(6) > 0:
total_text="Trench is Detected \n Image is Not Blurry \n"
else:
total_text="Trench is NOT Detected \n Image is Blurry \n"
print(type2)
print(type(type2))
if det_lab.count(4) > 0:
total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
else:
total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
if det_lab.count(5) > 0:
total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
else:
total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
return total_text
def tott(model_name,url_input,image_input,threshold,type2):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
keep = processed_outputs["scores"] > threshold
det_lab = processed_outputs["labels"][keep].tolist()
xxresult=0
if det_lab.count(6) == 0:
xxresult=1
if det_lab.count(4) == 0:
if type2=="Trench Depth Measurement":
xxresult=1
if det_lab.count(5) == 0:
if type2=="Trench Width Measurement":
xxresult=1
if xxresult==0:
return "The photo is ACCEPTED"
else:
return "The photo is NOT ACCEPTED"
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0])
title = """<h1 id="title">Object Detection App for POC</h1>"""
description = """
This application can be used as follows:
- Select the model
- Select the type of classification
- Select the photo
- Press Detect
- Press Results
"""
models = ["omarhkh/CutLER-finetuned-11" ,"omarhkh/CutLER-finetuned-12","omarhkh/detr-finetuned-omar8" , "omarhkh/CutLER-finetuned-omar3"]
types_class = ["Trench Depth Measurement", "Trench Width Measurement"]
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
#gr.Markdown(detect_objects2)
options = gr.Dropdown(value="omarhkh/CutLER-finetuned-11",choices=models,label='Select Object Detection Model',show_label=True)
options2 = gr.Dropdown(value="Trench Depth Measurement",choices=types_class,label='Select Classification Type',show_label=True)
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.8,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(shape=(650,650))
with gr.Row():
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
img_but = gr.Button('Detect')
with gr.Blocks():
name = gr.Textbox(label="Final Result")
output = gr.Textbox(label="Reason for the results")
greet_btn = gr.Button("Results")
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
greet_btn.click(fn=tott, inputs=[options,img_input,img_input,slider_input,options2], outputs=name, queue=True)
img_but.click(detect_objects,inputs=[options,img_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
demo.launch(enable_queue=True) |