omidk414 commited on
Commit
c2eb9c8
·
verified ·
1 Parent(s): c2ec7db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -2,7 +2,7 @@ import os
2
  import gradio as gr
3
  import numpy as np
4
  import tensorflow as tf
5
- from transformers import InferenceClient
6
  from dotenv import load_dotenv
7
  import nltk
8
 
@@ -10,9 +10,9 @@ import nltk
10
  load_dotenv()
11
  hf_api_key = os.getenv("HUGGING_FACE_KEY")
12
 
13
- # Initialize Hugging Face Inference Client for Llama Model
14
  llama_model = "meta-llama/Meta-Llama-3.1-8B-Instruct"
15
- client = InferenceClient(model=llama_model, token=hf_api_key)
16
 
17
  # Load the TensorFlow model
18
  model = tf.keras.models.load_model("resume_generator_model.h5")
@@ -21,13 +21,12 @@ model = tf.keras.models.load_model("resume_generator_model.h5")
21
  def enhance_with_huggingface(resume_text, job_title):
22
  """Generate enhanced resume content using Llama."""
23
  prompt = f"Enhance the following resume for the job title '{job_title}': {resume_text}"
24
- response = client.text_generation(prompt, max_length=500)
25
- return response['generated_text']
26
 
27
  def enhance_with_local_model(resume_text, job_title):
28
  """Generate enhancements using local TensorFlow model."""
29
  # Placeholder example: Use some custom logic for enhancement based on the local model.
30
- # This is a simplified example assuming model returns some text modification.
31
  sample_input = np.array([[len(resume_text.split()), len(job_title.split())]])
32
  enhancement_score = model.predict(sample_input)
33
  return f"Enhanced (Local Model) - Score: {enhancement_score[0][0]:.2f}"
 
2
  import gradio as gr
3
  import numpy as np
4
  import tensorflow as tf
5
+ from transformers import pipeline
6
  from dotenv import load_dotenv
7
  import nltk
8
 
 
10
  load_dotenv()
11
  hf_api_key = os.getenv("HUGGING_FACE_KEY")
12
 
13
+ # Initialize Hugging Face Text Generation Pipeline
14
  llama_model = "meta-llama/Meta-Llama-3.1-8B-Instruct"
15
+ text_generator = pipeline("text-generation", model=llama_model, use_auth_token=hf_api_key)
16
 
17
  # Load the TensorFlow model
18
  model = tf.keras.models.load_model("resume_generator_model.h5")
 
21
  def enhance_with_huggingface(resume_text, job_title):
22
  """Generate enhanced resume content using Llama."""
23
  prompt = f"Enhance the following resume for the job title '{job_title}': {resume_text}"
24
+ response = text_generator(prompt, max_length=500, num_return_sequences=1)
25
+ return response[0]['generated_text']
26
 
27
  def enhance_with_local_model(resume_text, job_title):
28
  """Generate enhancements using local TensorFlow model."""
29
  # Placeholder example: Use some custom logic for enhancement based on the local model.
 
30
  sample_input = np.array([[len(resume_text.split()), len(job_title.split())]])
31
  enhancement_score = model.predict(sample_input)
32
  return f"Enhanced (Local Model) - Score: {enhancement_score[0][0]:.2f}"