omkar56's picture
Update main.py
9e4ee07
import os
import nltk
from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException
from fastapi.security.api_key import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from typing import Optional, Annotated
from fastapi.encoders import jsonable_encoder
from PIL import Image
from io import BytesIO
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
API_KEY = os.environ.get("API_KEY")
VALID_IMAGE_EXTENSIONS = {"jpg", "jpeg", "png"}
app = FastAPI()
# CORS issue write below code
# origins = [
# "http://localhost:3000", # Update this with the actual origin of your frontend
# ]
# app.add_middleware(
# CORSMiddleware,
# allow_origins=origins,
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# ==========================
api_key_header = APIKeyHeader(name="api_key", auto_error=False)
def get_api_key(api_key: Optional[str] = Depends(api_key_header)):
if api_key is None or api_key != API_KEY:
raise HTTPException(status_code=401, detail="Unauthorized access")
return api_key
@app.post("/api/ocr", response_model=dict)
async def ocr(
api_key: str = Depends(get_api_key),
image: UploadFile = File(...),
# languages: list = Body(["eng"])
):
try:
# # Check if the file format is allowed
file_extension = image.filename.split(".")[-1].lower()
if file_extension not in VALID_IMAGE_EXTENSIONS:
raise HTTPException(status_code=400, detail="Invalid file format. Only .jpg, .jpeg, and .png are allowed.")
content = await image.read()
image = Image.open(BytesIO(content))
text = pytesseract.image_to_string(image, lang = 'eng')
# text = pytesseract.image_to_string(image, lang="+".join(languages))
except Exception as e:
return {"error": str(e)}, 500
return {"ImageText": text}
@app.post("/api/translate", response_model=dict)
async def translate(
api_key: str = Depends(get_api_key),
text: str = Body(...),
src: str = "en",
trg: str = "zh",
):
tokenizer, model = get_model(src, trg)
translated_text = ""
for sentence in sent_tokenize(text):
translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0]
translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n"
return jsonable_encoder({"translated_text": translated_text})
def get_model(src: str, trg: str):
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
return tokenizer, model