from fastapi import FastAPI from huggingface_hub import InferenceClient import random API_URL = "https://api-inference.huggingface.co/models/" client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) app = FastAPI() def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt @app.post("api/v1/generate_text") async def generate_text(request: Request, prompt: str = Body()): history = [] # You might need to handle this based on your actual usage temperature = request.headers.get("temperature", 0.9) top_p = request.headers.get("top_p", 0.95) repetition_penalty = request.headers.get("repetition_penalty", 1.0) formatted_prompt = format_prompt(prompt, history) response = client.text_generation( formatted_prompt, temperature=temperature, max_new_tokens=512, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=random.randint(0, 10**7), )[0] return response.token.text