File size: 7,015 Bytes
fc71d05
975614a
 
fc71d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975614a
fc71d05
 
 
 
 
 
975614a
 
fc71d05
 
 
 
 
975614a
fc71d05
 
 
 
 
 
975614a
fc71d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975614a
fc71d05
 
 
 
 
 
 
 
 
 
 
 
 
975614a
 
 
fc71d05
 
 
975614a
 
 
 
fc71d05
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import abc
import gradio as gr

from gen_table import *
from meta_data import *

# import pandas as pd
# pd.set_option('display.max_colwidth', 0)

head_style = """
<style>
@media (min-width: 1536px)
{
    .gradio-container {
        min-width: var(--size-full) !important;
    }
}
</style>
"""

with gr.Blocks(title="Open Agent Leaderboard", head=head_style) as demo:
    struct = load_results(OVERALL_MATH_SCORE_FILE)
    timestamp = struct['time']
    EVAL_TIME = format_timestamp(timestamp)
    results = struct['results']
    N_MODEL = len(results)
    N_DATA = len(results['IO'])
    DATASETS = list(results['IO'])
    DATASETS.remove('META')
    print(DATASETS)

    
    
    with gr.Tabs(elem_classes='tab-buttons') as tabs:
        gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME))

        with gr.TabItem('🏅 Open Agent Overall Math Leaderboard', elem_id='math', id=0):
            gr.Markdown(LEADERBOARD_MD['MATH_MAIN'])
            check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
            table = generate_table(results, DEFAULT_MATH_BENCH)

            type_map = check_box['type_map']
            type_map['Rank'] = 'number'

            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label='Evaluation Dimension',
                interactive=True,
            )

            headers = ['Rank'] + check_box['essential'] + checkbox_group.value
            data_component = gr.components.DataFrame(
                value=table[headers],
                type='pandas',
                datatype=[type_map[x] for x in headers],
                interactive=False,
                wrap=True,
                visible=True)
            
            def filter_df(fields, *args):
                # 获取基础列和选中的列
                headers = ['Rank'] + check_box['essential'] + fields
                df = table.copy()

                comp = gr.components.DataFrame(
                    value=table[headers],  # 只显示选中的列
                    type='pandas',
                    datatype=[type_map[x] for x in headers],
                    interactive=False,
                    wrap=True, 
                    visible=True)
                return comp

            # checkbox_group的change事件只需要传入checkbox_group
            checkbox_group.change(
                fn=filter_df, 
                inputs=[checkbox_group], 
                outputs=data_component
            )

        # detail math leaderboard
        with gr.TabItem('🏅 Open Agent Detail Math Leaderboard', elem_id='math_detail', id=1):
            gr.Markdown(LEADERBOARD_MD['MATH_DETAIL'])
            struct_detail = load_results(DETAIL_MATH_SCORE_FILE)
            timestamp = struct_detail['time']
            EVAL_TIME = format_timestamp(timestamp)
            results_detail = struct_detail['results']

            table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH)
            # table = generate_table_detail(results_detail, DEFAULT_MATH_BENCH)

            type_map = check_box['type_map']
            type_map['Rank'] = 'number'

            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label='Evaluation Dimension',
                interactive=True,
            )

            headers = ['Rank'] + checkbox_group.value
            with gr.Row():

                algo_name = gr.CheckboxGroup(
                        choices=ALGORITHMS,
                        value=ALGORITHMS,
                        label='Algorithm',
                        interactive=True
                    )

                dataset_name = gr.CheckboxGroup(
                        choices=DATASETS,
                        value=DATASETS,
                        label='Datasets',
                        interactive=True
                    )

                llm_name = gr.CheckboxGroup(
                        choices=LLM,
                        value=LLM,
                        label='LLM',
                        interactive=True
                    )
                
            data_component = gr.components.DataFrame(
                value=table[headers],
                type='pandas',
                datatype=[type_map[x] for x in headers],
                interactive=False,
                wrap=True,
                visible=True)
            
            def filter_df(fields, algos, datasets, llms):
                headers = ['Rank'] + check_box['essential'] + fields
                df = table.copy()
                
                # 过滤数据
                df['flag'] = df.apply(lambda row: (
                    row['Algorithm'] in algos and 
                    row['Dataset'] in datasets and 
                    row['LLM'] in llms
                ), axis=1)
                
                df = df[df['flag']].copy()
                df.pop('flag')
                
                # 按数据集分组,在每个组内根据Score排序并计算排名
                if 'Score' in df.columns:
                    # 创建一个临时的排名列
                    df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False)
                    
                    # 确保排名为整数
                    df['Rank'] = df['Rank'].astype(int)
                
                comp = gr.components.DataFrame(
                    value=df[headers],
                    type='pandas',
                    datatype=[type_map[x] for x in headers],
                    interactive=False,
                    wrap=True, 
                    visible=True)
                return comp

            # 为所有复选框组添加change事件
            checkbox_group.change(
                fn=filter_df, 
                inputs=[checkbox_group, algo_name, dataset_name, llm_name], 
                outputs=data_component
            )
            
            algo_name.change(
                fn=filter_df,
                inputs=[checkbox_group, algo_name, dataset_name, llm_name],
                outputs=data_component
            )
            
            dataset_name.change(
                fn=filter_df,
                inputs=[checkbox_group, algo_name, dataset_name, llm_name],
                outputs=data_component
            )
            
            llm_name.change(
                fn=filter_df,
                inputs=[checkbox_group, algo_name, dataset_name, llm_name],
                outputs=data_component
            )


    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            gr.Textbox(
                value=CITATION_BUTTON_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )

            
if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0')