Spaces:
Running
Running
File size: 7,015 Bytes
fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import abc
import gradio as gr
from gen_table import *
from meta_data import *
# import pandas as pd
# pd.set_option('display.max_colwidth', 0)
head_style = """
<style>
@media (min-width: 1536px)
{
.gradio-container {
min-width: var(--size-full) !important;
}
}
</style>
"""
with gr.Blocks(title="Open Agent Leaderboard", head=head_style) as demo:
struct = load_results(OVERALL_MATH_SCORE_FILE)
timestamp = struct['time']
EVAL_TIME = format_timestamp(timestamp)
results = struct['results']
N_MODEL = len(results)
N_DATA = len(results['IO'])
DATASETS = list(results['IO'])
DATASETS.remove('META')
print(DATASETS)
with gr.Tabs(elem_classes='tab-buttons') as tabs:
gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME))
with gr.TabItem('🏅 Open Agent Overall Math Leaderboard', elem_id='math', id=0):
gr.Markdown(LEADERBOARD_MD['MATH_MAIN'])
check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
table = generate_table(results, DEFAULT_MATH_BENCH)
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
data_component = gr.components.DataFrame(
value=table[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
def filter_df(fields, *args):
# 获取基础列和选中的列
headers = ['Rank'] + check_box['essential'] + fields
df = table.copy()
comp = gr.components.DataFrame(
value=table[headers], # 只显示选中的列
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
return comp
# checkbox_group的change事件只需要传入checkbox_group
checkbox_group.change(
fn=filter_df,
inputs=[checkbox_group],
outputs=data_component
)
# detail math leaderboard
with gr.TabItem('🏅 Open Agent Detail Math Leaderboard', elem_id='math_detail', id=1):
gr.Markdown(LEADERBOARD_MD['MATH_DETAIL'])
struct_detail = load_results(DETAIL_MATH_SCORE_FILE)
timestamp = struct_detail['time']
EVAL_TIME = format_timestamp(timestamp)
results_detail = struct_detail['results']
table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH)
# table = generate_table_detail(results_detail, DEFAULT_MATH_BENCH)
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
headers = ['Rank'] + checkbox_group.value
with gr.Row():
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
dataset_name = gr.CheckboxGroup(
choices=DATASETS,
value=DATASETS,
label='Datasets',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=LLM,
value=LLM,
label='LLM',
interactive=True
)
data_component = gr.components.DataFrame(
value=table[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
def filter_df(fields, algos, datasets, llms):
headers = ['Rank'] + check_box['essential'] + fields
df = table.copy()
# 过滤数据
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['Dataset'] in datasets and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# 按数据集分组,在每个组内根据Score排序并计算排名
if 'Score' in df.columns:
# 创建一个临时的排名列
df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False)
# 确保排名为整数
df['Rank'] = df['Rank'].astype(int)
comp = gr.components.DataFrame(
value=df[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
return comp
# 为所有复选框组添加change事件
checkbox_group.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
dataset_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0') |