File size: 9,437 Bytes
fc71d05
975614a
c9a97c2
975614a
fc71d05
 
 
 
e90e797
bd69a52
fc71d05
 
 
 
 
 
 
 
 
 
c9a97c2
 
 
 
 
 
 
 
 
 
 
fc71d05
bd69a52
 
bbcdbca
fc71d05
c9a97c2
 
 
fc71d05
 
 
 
 
 
 
 
 
 
 
c9a97c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8059b
e90e797
 
fc71d05
e90e797
fc71d05
8d8059b
fc71d05
 
 
 
c9a97c2
fc71d05
c9a97c2
 
 
 
 
 
 
 
 
 
e90e797
a7d1809
c9a97c2
e90e797
c9a97c2
e90e797
 
a7d1809
8d8059b
 
 
fc71d05
c9a97c2
fc71d05
8d8059b
fc71d05
8d8059b
fc71d05
c9a97c2
fc71d05
 
c9a97c2
fc71d05
 
c9a97c2
 
 
 
 
 
 
 
 
 
 
 
 
fc71d05
 
 
bbcdbca
fc71d05
 
 
 
 
 
 
c9a97c2
 
 
 
 
 
fc71d05
 
 
 
 
 
 
 
 
 
 
975614a
fc71d05
 
 
 
 
 
975614a
 
fc71d05
 
 
 
 
975614a
fc71d05
c9a97c2
 
 
 
 
 
fc71d05
 
 
 
 
 
 
 
 
e90e797
 
fc71d05
 
a7d1809
fc71d05
 
 
 
 
 
 
 
 
a7d1809
fc71d05
a7d1809
fc71d05
 
a7d1809
fc71d05
 
e90e797
 
 
fc71d05
 
 
 
 
 
 
c9a97c2
fc71d05
 
 
 
e90e797
fc71d05
 
 
 
 
e90e797
fc71d05
 
975614a
fc71d05
 
e90e797
fc71d05
 
 
 
 
e90e797
fc71d05
 
 
 
975614a
 
 
fc71d05
 
 
975614a
 
 
 
c9a97c2
fc71d05
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import abc
import gradio as gr
import os

from gen_table import *
from meta_data import *



with gr.Blocks(title="Open Agent Leaderboard") as demo:
    struct = load_results(OVERALL_MATH_SCORE_FILE)
    timestamp = struct['time']
    EVAL_TIME = format_timestamp(timestamp)
    results = struct['results']
    N_MODEL = len(results)
    N_DATA = len(results['IO'])
    DATASETS = list(results['IO'])
    DATASETS.remove('META')
    print(DATASETS)

    # 确保在定义llm_options之前生成overall_table
    check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
    overall_table = generate_table(results, DEFAULT_MATH_BENCH)

    # 保存完整的overall_table为CSV文件
    csv_path_overall = os.path.join(os.getcwd(), 'src/overall_results.csv')
    overall_table.to_csv(csv_path_overall, index=False)
    print(f"Overall results saved to {csv_path_overall}")

    # 从overall_table中提取所有可能的LLM选项
    llm_options = list(set(row.LLM for row in overall_table.itertuples() if hasattr(row, 'LLM')))
    
    gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME))
    with gr.Tabs(elem_classes='tab-buttons') as tabs:
        with gr.Tab(label='🏅 Open Agent Overall Math Leaderboard'):
            gr.Markdown(LEADERBOARD_MD['MATH_MAIN'])
            # 移动check_box和overall_table的定义到这里
            # check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
            # overall_table = generate_table(results, DEFAULT_MATH_BENCH)

            type_map = check_box['type_map']
            type_map['Rank'] = 'number'

            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label='Evaluation Dimension',
                interactive=True,
            )

            # 新增的CheckboxGroup组件用于选择Algorithm和LLM
            algo_name = gr.CheckboxGroup(
                choices=ALGORITHMS,
                value=ALGORITHMS,
                label='Algorithm',
                interactive=True
            )

            llm_name = gr.CheckboxGroup(
                choices=llm_options,  # 使用提取的llm_options
                value=llm_options,
                label='LLM',
                interactive=True
            )

            initial_headers = ['Rank'] + check_box['essential'] + checkbox_group.value
            available_headers = [h for h in initial_headers if h in overall_table.columns]

            data_component = gr.components.DataFrame(
                value=overall_table[available_headers],  
                type='pandas',
                datatype=[type_map[x] for x in available_headers],
                interactive=False,
                wrap=True,
                visible=True)
            
            def filter_df(fields, algos, llms, *args):
                headers = ['Rank'] + check_box['essential'] + fields
                df = overall_table.copy()

                # 添加过滤逻辑
                df['flag'] = df.apply(lambda row: (
                    row['Algorithm'] in algos and 
                    row['LLM'] in llms
                ), axis=1)
                
                df = df[df['flag']].copy()
                df.pop('flag')

                # Ensure all requested columns exist
                available_headers = [h for h in headers if h in df.columns]

                original_columns = df.columns.tolist()
                available_headers = sorted(available_headers, key=lambda x: original_columns.index(x))

                # If no columns are available, return an empty DataFrame with basic columns
                if not available_headers:
                    available_headers = ['Rank'] + check_box['essential']
                
                comp = gr.components.DataFrame(
                    value=df[available_headers],
                    type='pandas',
                    datatype=[type_map[x] for x in available_headers],
                    interactive=False,
                    wrap=True,
                    visible=True)

                return comp

            # 更新change事件以包含新的过滤条件
            checkbox_group.change(
                fn=filter_df, 
                inputs=[checkbox_group, algo_name, llm_name], 
                outputs=data_component
            )

            algo_name.change(
                fn=filter_df,
                inputs=[checkbox_group, algo_name, llm_name],
                outputs=data_component
            )

            llm_name.change(
                fn=filter_df,
                inputs=[checkbox_group, algo_name, llm_name],
                outputs=data_component
            )

        with gr.Tab(label='🏅 Open Agent Detail Math Leaderboard'):
            gr.Markdown(LEADERBOARD_MD['MATH_DETAIL'])
            struct_detail = load_results(DETAIL_MATH_SCORE_FILE)
            timestamp = struct_detail['time']
            EVAL_TIME = format_timestamp(timestamp)
            results_detail = struct_detail['results']

            table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH)

            # 保存完整的table为CSV文件
            csv_path_detail = os.path.join(os.getcwd(), 'src/detail_results.csv')
            table.to_csv(csv_path_detail, index=False)
            print(f"Detail results saved to {csv_path_detail}")

            type_map = check_box['type_map']
            type_map['Rank'] = 'number'

            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label='Evaluation Dimension',
                interactive=True,
            )

            headers = ['Rank'] + checkbox_group.value
            with gr.Row():

                algo_name = gr.CheckboxGroup(
                        choices=ALGORITHMS,
                        value=ALGORITHMS,
                        label='Algorithm',
                        interactive=True
                    )

                dataset_name = gr.CheckboxGroup(
                        choices=DATASETS,
                        value=DATASETS,
                        label='Datasets',
                        interactive=True
                    )

            llm_name = gr.CheckboxGroup(
                    choices=check_box['LLM_options'],
                    value=check_box['LLM_options'],
                    label='LLM',
                    interactive=True
                )
                
            data_component = gr.components.DataFrame(
                value=table[headers],
                type='pandas',
                datatype=[type_map[x] for x in headers],
                interactive=False,
                wrap=True,
                visible=True)
            
            def filter_df2(fields, algos, datasets, llms):
                headers =  ['Rank'] + fields
                df = table.copy()
                
                # Filter data
                df['flag'] = df.apply(lambda row: (
                    row['Algorithm'] in algos and 
                    row['Dataset'] in datasets and 
                    row['LLM'] in llms
                ), axis=1)
                
                df = df[df['flag']].copy()
                df.pop('flag')
                
                # Group by dataset and calculate ranking within each group based on Score
                if 'Score' in df.columns:
                    # Create a temporary ranking column
                    df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False)
                    
                    # Ensure ranking is integer
                    df['Rank'] = df['Rank'].astype(int)
                
                
                original_columns = df.columns.tolist()
                headers = sorted(headers, key=lambda x: original_columns.index(x))
                comp = gr.components.DataFrame(
                    value=df[headers],
                    type='pandas',
                    datatype=[type_map[x] for x in headers],
                    interactive=False,
                    wrap=True, 
                    visible=True)

                return comp

            # 为所有复选框组添加change事件
            checkbox_group.change(
                fn=filter_df2, 
                inputs=[checkbox_group, algo_name, dataset_name, llm_name], 
                outputs=data_component
            )
            
            algo_name.change(
                fn=filter_df2,
                inputs=[checkbox_group, algo_name, dataset_name, llm_name],
                outputs=data_component
            )
            
            dataset_name.change(
                fn=filter_df2,
                inputs=[checkbox_group, algo_name, dataset_name, llm_name],
                outputs=data_component
            )
            
            llm_name.change(
                fn=filter_df2,
                inputs=[checkbox_group, algo_name, dataset_name, llm_name],
                outputs=data_component
            )


    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            gr.Textbox(
                value=CITATION_BUTTON_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )


            
if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0')