Spaces:
Running
Running
File size: 9,437 Bytes
fc71d05 975614a c9a97c2 975614a fc71d05 e90e797 bd69a52 fc71d05 c9a97c2 fc71d05 bd69a52 bbcdbca fc71d05 c9a97c2 fc71d05 c9a97c2 8d8059b e90e797 fc71d05 e90e797 fc71d05 8d8059b fc71d05 c9a97c2 fc71d05 c9a97c2 e90e797 a7d1809 c9a97c2 e90e797 c9a97c2 e90e797 a7d1809 8d8059b fc71d05 c9a97c2 fc71d05 8d8059b fc71d05 8d8059b fc71d05 c9a97c2 fc71d05 c9a97c2 fc71d05 c9a97c2 fc71d05 bbcdbca fc71d05 c9a97c2 fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 c9a97c2 fc71d05 e90e797 fc71d05 a7d1809 fc71d05 a7d1809 fc71d05 a7d1809 fc71d05 a7d1809 fc71d05 e90e797 fc71d05 c9a97c2 fc71d05 e90e797 fc71d05 e90e797 fc71d05 975614a fc71d05 e90e797 fc71d05 e90e797 fc71d05 975614a fc71d05 975614a c9a97c2 fc71d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import abc
import gradio as gr
import os
from gen_table import *
from meta_data import *
with gr.Blocks(title="Open Agent Leaderboard") as demo:
struct = load_results(OVERALL_MATH_SCORE_FILE)
timestamp = struct['time']
EVAL_TIME = format_timestamp(timestamp)
results = struct['results']
N_MODEL = len(results)
N_DATA = len(results['IO'])
DATASETS = list(results['IO'])
DATASETS.remove('META')
print(DATASETS)
# 确保在定义llm_options之前生成overall_table
check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
overall_table = generate_table(results, DEFAULT_MATH_BENCH)
# 保存完整的overall_table为CSV文件
csv_path_overall = os.path.join(os.getcwd(), 'src/overall_results.csv')
overall_table.to_csv(csv_path_overall, index=False)
print(f"Overall results saved to {csv_path_overall}")
# 从overall_table中提取所有可能的LLM选项
llm_options = list(set(row.LLM for row in overall_table.itertuples() if hasattr(row, 'LLM')))
gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME))
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.Tab(label='🏅 Open Agent Overall Math Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MATH_MAIN'])
# 移动check_box和overall_table的定义到这里
# check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
# overall_table = generate_table(results, DEFAULT_MATH_BENCH)
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
# 新增的CheckboxGroup组件用于选择Algorithm和LLM
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=llm_options, # 使用提取的llm_options
value=llm_options,
label='LLM',
interactive=True
)
initial_headers = ['Rank'] + check_box['essential'] + checkbox_group.value
available_headers = [h for h in initial_headers if h in overall_table.columns]
data_component = gr.components.DataFrame(
value=overall_table[available_headers],
type='pandas',
datatype=[type_map[x] for x in available_headers],
interactive=False,
wrap=True,
visible=True)
def filter_df(fields, algos, llms, *args):
headers = ['Rank'] + check_box['essential'] + fields
df = overall_table.copy()
# 添加过滤逻辑
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Ensure all requested columns exist
available_headers = [h for h in headers if h in df.columns]
original_columns = df.columns.tolist()
available_headers = sorted(available_headers, key=lambda x: original_columns.index(x))
# If no columns are available, return an empty DataFrame with basic columns
if not available_headers:
available_headers = ['Rank'] + check_box['essential']
comp = gr.components.DataFrame(
value=df[available_headers],
type='pandas',
datatype=[type_map[x] for x in available_headers],
interactive=False,
wrap=True,
visible=True)
return comp
# 更新change事件以包含新的过滤条件
checkbox_group.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
with gr.Tab(label='🏅 Open Agent Detail Math Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MATH_DETAIL'])
struct_detail = load_results(DETAIL_MATH_SCORE_FILE)
timestamp = struct_detail['time']
EVAL_TIME = format_timestamp(timestamp)
results_detail = struct_detail['results']
table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH)
# 保存完整的table为CSV文件
csv_path_detail = os.path.join(os.getcwd(), 'src/detail_results.csv')
table.to_csv(csv_path_detail, index=False)
print(f"Detail results saved to {csv_path_detail}")
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
headers = ['Rank'] + checkbox_group.value
with gr.Row():
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
dataset_name = gr.CheckboxGroup(
choices=DATASETS,
value=DATASETS,
label='Datasets',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=check_box['LLM_options'],
value=check_box['LLM_options'],
label='LLM',
interactive=True
)
data_component = gr.components.DataFrame(
value=table[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
def filter_df2(fields, algos, datasets, llms):
headers = ['Rank'] + fields
df = table.copy()
# Filter data
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['Dataset'] in datasets and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Group by dataset and calculate ranking within each group based on Score
if 'Score' in df.columns:
# Create a temporary ranking column
df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False)
# Ensure ranking is integer
df['Rank'] = df['Rank'].astype(int)
original_columns = df.columns.tolist()
headers = sorted(headers, key=lambda x: original_columns.index(x))
comp = gr.components.DataFrame(
value=df[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
return comp
# 为所有复选框组添加change事件
checkbox_group.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
dataset_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0') |