Spaces:
Build error
Build error
ommnnitald
commited on
Commit
•
4fa8cbe
1
Parent(s):
d5c465e
Upload 3 files
Browse files- README.md +2 -3
- app.py +211 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
title: Speaker Authentication
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Speaker Authentication
|
3 |
+
emoji: 🦀
|
4 |
colorFrom: blue
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import whisper
|
5 |
+
import re
|
6 |
+
from nemo.collections.asr.models import EncDecSpeakerLabelModel
|
7 |
+
|
8 |
+
# from transformers import Wav2Vec2Processor, Wav2Vec2Tokenizer
|
9 |
+
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
|
14 |
+
def audio_to_text(audio):
|
15 |
+
model = whisper.load_model("base.en")
|
16 |
+
|
17 |
+
audio = whisper.load_audio(audio)
|
18 |
+
result = model.transcribe(audio)
|
19 |
+
|
20 |
+
return result["text"]
|
21 |
+
|
22 |
+
|
23 |
+
random_sentences = [
|
24 |
+
"the keep brown",
|
25 |
+
"jump over table",
|
26 |
+
"green mango fruit",
|
27 |
+
"how much money",
|
28 |
+
"please audio speaker",
|
29 |
+
"nothing is better",
|
30 |
+
"garden banana orange",
|
31 |
+
"tiger animal king",
|
32 |
+
"laptop mouse monitor"
|
33 |
+
]
|
34 |
+
|
35 |
+
additional_random_sentences = [
|
36 |
+
"sunrise over mountains"
|
37 |
+
"whispering gentle breeze"
|
38 |
+
"garden of roses"
|
39 |
+
"melodies in rain"
|
40 |
+
"laughing with friends"
|
41 |
+
"silent midnight moon"
|
42 |
+
"skipping in meadow"
|
43 |
+
"ocean waves crashing"
|
44 |
+
"exploring hidden caves"
|
45 |
+
"serenading under stars"
|
46 |
+
]
|
47 |
+
|
48 |
+
|
49 |
+
# Define a Gradio interface with text inputs for both speakers
|
50 |
+
def get_random_sentence():
|
51 |
+
return random.choice(random_sentences)
|
52 |
+
|
53 |
+
|
54 |
+
text_inputs = [
|
55 |
+
gr.inputs.Textbox(label="Speak the Words given below:", default=get_random_sentence, lines=1),
|
56 |
+
]
|
57 |
+
|
58 |
+
STYLE = """
|
59 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
|
60 |
+
"""
|
61 |
+
|
62 |
+
OUTPUT_ERROR = (
|
63 |
+
STYLE
|
64 |
+
+ """
|
65 |
+
<div class="container">
|
66 |
+
<div class="row"><h1 style="text-align: center">Spoken Words Did Not Match to the OTP, </h1></div>
|
67 |
+
<div class="row"><h1 class="text-danger" style="text-align: center">Please Speak Clearly!!!!</h1></div>
|
68 |
+
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 1: {}</h1></div>
|
69 |
+
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 2: {}</h1></div>
|
70 |
+
</div>
|
71 |
+
"""
|
72 |
+
)
|
73 |
+
|
74 |
+
OUTPUT_OK = (
|
75 |
+
STYLE
|
76 |
+
+ """
|
77 |
+
<div class="container">
|
78 |
+
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div>
|
79 |
+
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div>
|
80 |
+
<div class="row"><h1 class="text-success" style="text-align: center">Authentication Successfull!!!</h1></div>
|
81 |
+
|
82 |
+
</div>
|
83 |
+
"""
|
84 |
+
)
|
85 |
+
OUTPUT_FAIL = (
|
86 |
+
STYLE
|
87 |
+
+ """
|
88 |
+
<div class="container">
|
89 |
+
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div>
|
90 |
+
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div>
|
91 |
+
<div class="row"><h1 class="text-danger" style="text-align: center">Authentication Failed!!!</h1></div>
|
92 |
+
</div>
|
93 |
+
"""
|
94 |
+
)
|
95 |
+
|
96 |
+
THRESHOLD = 0.80
|
97 |
+
|
98 |
+
model_name = "nvidia/speakerverification_en_titanet_large"
|
99 |
+
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device)
|
100 |
+
|
101 |
+
|
102 |
+
def clean_sentence(sentence):
|
103 |
+
# Remove commas and full stops using regular expression
|
104 |
+
cleaned_sentence = re.sub(r'[,.?!]', '', sentence)
|
105 |
+
# Convert the sentence to lowercase
|
106 |
+
cleaned_sentence = cleaned_sentence.lower()
|
107 |
+
cleaned_sentence = cleaned_sentence.strip()
|
108 |
+
return cleaned_sentence
|
109 |
+
|
110 |
+
|
111 |
+
def compare_samples(text, path1, path2):
|
112 |
+
if not (path1 and path2):
|
113 |
+
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
|
114 |
+
|
115 |
+
cls1 = audio_to_text(path1)
|
116 |
+
cls2 = audio_to_text(path2)
|
117 |
+
|
118 |
+
myText = clean_sentence(text)
|
119 |
+
Spoken1 = clean_sentence(cls1)
|
120 |
+
Spoken2 = clean_sentence(cls2)
|
121 |
+
|
122 |
+
print("OTP Given:", myText)
|
123 |
+
print("Spoken 1:", Spoken1)
|
124 |
+
print("Spoken 2:", Spoken2)
|
125 |
+
|
126 |
+
if Spoken1 == Spoken2 == myText:
|
127 |
+
embs1 = model.get_embedding(path1).squeeze()
|
128 |
+
embs2 = model.get_embedding(path2).squeeze()
|
129 |
+
|
130 |
+
# Length Normalize
|
131 |
+
X = embs1 / torch.linalg.norm(embs1)
|
132 |
+
Y = embs2 / torch.linalg.norm(embs2)
|
133 |
+
|
134 |
+
# Score
|
135 |
+
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
|
136 |
+
similarity_score = (similarity_score + 1) / 2
|
137 |
+
|
138 |
+
# Decision
|
139 |
+
if similarity_score >= THRESHOLD:
|
140 |
+
return OUTPUT_OK
|
141 |
+
else:
|
142 |
+
return OUTPUT_FAIL
|
143 |
+
else:
|
144 |
+
return OUTPUT_ERROR.format(Spoken1, Spoken2)
|
145 |
+
|
146 |
+
|
147 |
+
#
|
148 |
+
# def compare_samples1(path1, path2):
|
149 |
+
# if not (path1 and path2):
|
150 |
+
# return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
|
151 |
+
#
|
152 |
+
# embs1 = model.get_embedding(path1).squeeze()
|
153 |
+
# embs2 = model.get_embedding(path2).squeeze()
|
154 |
+
#
|
155 |
+
# # Length Normalize
|
156 |
+
# X = embs1 / torch.linalg.norm(embs1)
|
157 |
+
# Y = embs2 / torch.linalg.norm(embs2)
|
158 |
+
#
|
159 |
+
# # Score
|
160 |
+
# similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
|
161 |
+
# similarity_score = (similarity_score + 1) / 2
|
162 |
+
#
|
163 |
+
# # Decision
|
164 |
+
# if similarity_score >= THRESHOLD:
|
165 |
+
# return OUTPUT_OK.format(similarity_score * 100)
|
166 |
+
# else:
|
167 |
+
# return OUTPUT_FAIL.format(similarity_score * 100)
|
168 |
+
|
169 |
+
|
170 |
+
inputs = [
|
171 |
+
*text_inputs,
|
172 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
|
173 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
|
174 |
+
]
|
175 |
+
|
176 |
+
# upload_inputs = [
|
177 |
+
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #1"),
|
178 |
+
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #2"),
|
179 |
+
# ]
|
180 |
+
|
181 |
+
description = (
|
182 |
+
"Compare two speech samples and determine if they are from the same speaker."
|
183 |
+
)
|
184 |
+
|
185 |
+
microphone_interface = gr.Interface(
|
186 |
+
fn=compare_samples,
|
187 |
+
inputs=inputs,
|
188 |
+
outputs=gr.outputs.HTML(label=""),
|
189 |
+
title="Speaker Verification",
|
190 |
+
description=description,
|
191 |
+
layout="horizontal",
|
192 |
+
theme="huggingface",
|
193 |
+
allow_flagging=False,
|
194 |
+
live=False,
|
195 |
+
)
|
196 |
+
|
197 |
+
# upload_interface = gr.Interface(
|
198 |
+
# fn=compare_samples1,
|
199 |
+
# inputs=upload_inputs,
|
200 |
+
# outputs=gr.outputs.HTML(label=""),
|
201 |
+
# title="Speaker Verification",
|
202 |
+
# description=description,
|
203 |
+
# layout="horizontal",
|
204 |
+
# theme="huggingface",
|
205 |
+
# allow_flagging=False,
|
206 |
+
# live=False,
|
207 |
+
# )
|
208 |
+
|
209 |
+
demo = gr.TabbedInterface([microphone_interface, ], ["Microphone", ])
|
210 |
+
# demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"])
|
211 |
+
demo.launch(enable_queue=True, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
git+https://github.com/NVIDIA/NeMo.git@r1.16.0#egg=nemo_toolkit[asr]
|