Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,982 Bytes
97a05c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# Copyright (2024) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from models.modeling_tarsier import TarsierForConditionalGeneration, LlavaConfig
from dataset.processor import Processor
import torch
import base64
class Color:
@staticmethod
def red(x):
return '\33[31m' +x + '\033[0m'
@staticmethod
def green(x):
return '\33[32m' +x + '\033[0m'
@staticmethod
def yellow(x):
return '\33[33m' +x + '\033[0m'
@staticmethod
def blue(x):
return '\33[34m' +x + '\033[0m'
@staticmethod
def violet(x):
return '\33[35m' +x + '\033[0m'
def file_to_base64(img_path):
with open(img_path, 'rb') as video_file:
video_b64_str = base64.b64encode(video_file.read()).decode()
return video_b64_str
def load_model_and_processor(model_name_or_path, max_n_frames=8):
print(Color.red(f"Load model and processor from: {model_name_or_path}; with max_n_frames={max_n_frames}"), flush=True)
processor = Processor(
model_name_or_path,
max_n_frames=max_n_frames,
)
model_config = LlavaConfig.from_pretrained(
model_name_or_path,
trust_remote_code=True,
)
model = TarsierForConditionalGeneration.from_pretrained(
model_name_or_path,
config=model_config,
device_map='auto',
torch_dtype=torch.float16,
trust_remote_code=True
)
model.eval()
return model, processor
|