File size: 14,266 Bytes
46c6fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Modified from https://github.com/microsoft/presidio/blob/main/docs/samples/python/transformers_recognizer/transformer_recognizer.py
import copy
import logging
from typing import Optional, List
import torch
from presidio_analyzer import (
RecognizerResult,
EntityRecognizer,
AnalysisExplanation,
)
from presidio_analyzer.nlp_engine import NlpArtifacts
from .configuration import BERT_DEID_CONFIGURATION
logger = logging.getLogger("presidio-analyzer")
try:
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification,
pipeline,
TokenClassificationPipeline,
)
except ImportError:
logger.error("transformers_rec is not installed")
class TransformersRecognizer(EntityRecognizer):
"""
Wrapper for a transformers_rec model, if needed to be used within Presidio Analyzer.
The class loads models hosted on HuggingFace - https://huggingface.co/
and loads the model and tokenizer into a TokenClassification pipeline.
Samples are split into short text chunks, ideally shorter than max_length input_ids of the individual model,
to avoid truncation by the Tokenizer and loss of information
A configuration object should be maintained for each dataset-model combination and translate
entities names into a standardized view. A sample of a configuration file is attached in
the example.
:param supported_entities: List of entities to run inference on
:type supported_entities: Optional[List[str]]
:param pipeline: Instance of a TokenClassificationPipeline including a Tokenizer and a Model, defaults to None
:type pipeline: Optional[TokenClassificationPipeline], optional
:param model_path: string referencing a HuggingFace uploaded model to be used for Inference, defaults to None
:type model_path: Optional[str], optional
:example
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
>model_path = "obi/deid_roberta_i2b2"
>transformers_recognizer = TransformersRecognizer(model_path=model_path,
>supported_entities = model_configuration.get("PRESIDIO_SUPPORTED_ENTITIES"))
>transformers_recognizer.load_transformer(**model_configuration)
>registry = RecognizerRegistry()
>registry.add_recognizer(transformers_recognizer)
>analyzer = AnalyzerEngine(registry=registry)
>sample = "My name is Christopher and I live in Irbid."
>results = analyzer.analyze(sample, language="en",return_decision_process=True)
>for result in results:
> print(result,'----', sample[result.start:result.end])
"""
def load(self) -> None:
pass
def __init__(
self,
model_path: Optional[str] = None,
pipeline: Optional[TokenClassificationPipeline] = None,
supported_entities: Optional[List[str]] = None,
):
if not supported_entities:
supported_entities = BERT_DEID_CONFIGURATION[
"PRESIDIO_SUPPORTED_ENTITIES"
]
super().__init__(
supported_entities=supported_entities,
name=f"Transformers model {model_path}",
)
self.model_path = model_path
self.pipeline = pipeline
self.is_loaded = False
self.aggregation_mechanism = None
self.ignore_labels = None
self.model_to_presidio_mapping = None
self.entity_mapping = None
self.default_explanation = None
self.text_overlap_length = None
self.chunk_length = None
self.id_entity_name = None
self.id_score_reduction = None
def load_transformer(self, **kwargs) -> None:
"""Load external configuration parameters and set default values.
:param kwargs: define default values for class attributes and modify pipeline behavior
**DATASET_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from dataset format to Presidio format
**MODEL_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from chosen model format to Presidio format
**SUB_WORD_AGGREGATION(str) - define how to aggregate sub-word tokens into full words and spans as defined
in HuggingFace https://huggingface.co/transformers/v4.8.0/main_classes/pipelines.html#transformers.TokenClassificationPipeline # noqa
**CHUNK_OVERLAP_SIZE (int) - number of overlapping characters in each text chunk
when splitting a single text into multiple inferences
**CHUNK_SIZE (int) - number of characters in each chunk of text
**LABELS_TO_IGNORE (List(str)) - List of entities to skip evaluation. Defaults to ["O"]
**DEFAULT_EXPLANATION (str) - string format to use for prediction explanations
**ID_ENTITY_NAME (str) - name of the ID entity
**ID_SCORE_REDUCTION (float) - score multiplier for ID entities
"""
self.entity_mapping = kwargs.get("DATASET_TO_PRESIDIO_MAPPING", {})
self.model_to_presidio_mapping = kwargs.get("MODEL_TO_PRESIDIO_MAPPING", {})
self.ignore_labels = kwargs.get("LABELS_TO_IGNORE", ["O"])
self.aggregation_mechanism = kwargs.get("SUB_WORD_AGGREGATION", "simple")
self.default_explanation = kwargs.get("DEFAULT_EXPLANATION", None)
self.text_overlap_length = kwargs.get("CHUNK_OVERLAP_SIZE", 40)
self.chunk_length = kwargs.get("CHUNK_SIZE", 600)
self.id_entity_name = kwargs.get("ID_ENTITY_NAME", "ID")
self.id_score_reduction = kwargs.get("ID_SCORE_REDUCTION", 0.5)
if not self.pipeline:
if not self.model_path:
self.model_path = "obi/deid_roberta_i2b2"
logger.warning(
f"Both 'model' and 'model_path' arguments are None. Using default model_path={self.model_path}"
)
self._load_pipeline()
def _load_pipeline(self) -> None:
"""Initialize NER transformers_rec pipeline using the model_path provided"""
logging.debug(f"Initializing NER pipeline using {self.model_path} path")
device = 0 if torch.cuda.is_available() else -1
self.pipeline = pipeline(
"ner",
model=AutoModelForTokenClassification.from_pretrained(self.model_path),
tokenizer=AutoTokenizer.from_pretrained(self.model_path),
# Will attempt to group sub-entities to word level
aggregation_strategy=self.aggregation_mechanism,
device=device,
framework="pt",
ignore_labels=self.ignore_labels,
)
self.is_loaded = True
def get_supported_entities(self) -> List[str]:
"""
Return supported entities by this model.
:return: List of the supported entities.
"""
return self.supported_entities
# Class to use transformers_rec with Presidio as an external recognizer.
def analyze(
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
) -> List[RecognizerResult]:
"""
Analyze text using transformers_rec model to produce NER tagging.
:param text : The text for analysis.
:param entities: Not working properly for this recognizer.
:param nlp_artifacts: Not used by this recognizer.
:return: The list of Presidio RecognizerResult constructed from the recognized
transformers_rec detections.
"""
results = list()
# Run transformer model on the provided text
ner_results = self._get_ner_results_for_text(text)
for res in ner_results:
print(f"res: {res}")
res["entity_group"] = self.__check_label_transformer(res["entity_group"])
print(f"res[entity_group]: {res['entity_group']}")
print("---")
if not res["entity_group"]:
continue
if res["entity_group"] == self.id_entity_name:
print(f"ID entity found, multiplying score by {self.id_score_reduction}")
res["score"] = res["score"] * self.id_score_reduction
textual_explanation = self.default_explanation.format(res["entity_group"])
explanation = self.build_transformers_explanation(
float(round(res["score"], 2)), textual_explanation, res["word"]
)
transformers_result = self._convert_to_recognizer_result(res, explanation)
results.append(transformers_result)
return results
@staticmethod
def split_text_to_word_chunks(
input_length: int, chunk_length: int, overlap_length: int
) -> List[List]:
"""The function calculates chunks of text with size chunk_length. Each chunk has overlap_length number of
words to create context and continuity for the model
:param input_length: Length of input_ids for a given text
:type input_length: int
:param chunk_length: Length of each chunk of input_ids.
Should match the max input length of the transformer model
:type chunk_length: int
:param overlap_length: Number of overlapping words in each chunk
:type overlap_length: int
:return: List of start and end positions for individual text chunks
:rtype: List[List]
"""
if input_length < chunk_length:
return [[0, input_length]]
if chunk_length <= overlap_length:
logger.warning(
"overlap_length should be shorter than chunk_length, setting overlap_length to by half of chunk_length"
)
overlap_length = chunk_length // 2
return [
[i, min([i + chunk_length, input_length])]
for i in range(
0, input_length - overlap_length, chunk_length - overlap_length
)
]
def _get_ner_results_for_text(self, text: str) -> List[dict]:
"""The function runs model inference on the provided text.
The text is split into chunks with n overlapping characters.
The results are then aggregated and duplications are removed.
:param text: The text to run inference on
:type text: str
:return: List of entity predictions on the word level
:rtype: List[dict]
"""
model_max_length = self.pipeline.tokenizer.model_max_length
# calculate inputs based on the text
text_length = len(text)
# split text into chunks
if text_length <= model_max_length:
predictions = self.pipeline(text)
else:
logger.info(
f"splitting the text into chunks, length {text_length} > {model_max_length}"
)
predictions = list()
chunk_indexes = TransformersRecognizer.split_text_to_word_chunks(
text_length, self.chunk_length, self.text_overlap_length
)
# iterate over text chunks and run inference
for chunk_start, chunk_end in chunk_indexes:
chunk_text = text[chunk_start:chunk_end]
chunk_preds = self.pipeline(chunk_text)
# align indexes to match the original text - add to each position the value of chunk_start
aligned_predictions = list()
for prediction in chunk_preds:
prediction_tmp = copy.deepcopy(prediction)
prediction_tmp["start"] += chunk_start
prediction_tmp["end"] += chunk_start
aligned_predictions.append(prediction_tmp)
predictions.extend(aligned_predictions)
# remove duplicates
predictions = [dict(t) for t in {tuple(d.items()) for d in predictions}]
return predictions
@staticmethod
def _convert_to_recognizer_result(
prediction_result: dict, explanation: AnalysisExplanation
) -> RecognizerResult:
"""The method parses NER model predictions into a RecognizerResult format to enable down the stream analysis
:param prediction_result: A single example of entity prediction
:type prediction_result: dict
:param explanation: Textual representation of model prediction
:type explanation: str
:return: An instance of RecognizerResult which is used to model evaluation calculations
:rtype: RecognizerResult
"""
transformers_results = RecognizerResult(
entity_type=prediction_result["entity_group"],
start=prediction_result["start"],
end=prediction_result["end"],
score=float(round(prediction_result["score"], 2)),
analysis_explanation=explanation,
)
return transformers_results
def build_transformers_explanation(
self,
original_score: float,
explanation: str,
pattern: str,
) -> AnalysisExplanation:
"""
Create explanation for why this result was detected.
:param original_score: Score given by this recognizer
:param explanation: Explanation string
:param pattern: Regex pattern used
:return Structured explanation and scores of a NER model prediction
:rtype: AnalysisExplanation
"""
explanation = AnalysisExplanation(
recognizer=self.__class__.__name__,
original_score=float(original_score),
textual_explanation=explanation,
pattern=pattern,
)
return explanation
def __check_label_transformer(self, label: str) -> Optional[str]:
"""The function validates the predicted label is identified by Presidio
and maps the string into a Presidio representation
:param label: Predicted label by the model
:return: Returns the adjusted entity name
"""
# convert model label to presidio label
entity = self.model_to_presidio_mapping.get(label, None)
if entity in self.ignore_labels:
return None
if entity is None:
logger.warning(f"Found unrecognized label {label}, returning entity as is")
return label
if entity not in self.supported_entities:
logger.warning(f"Found entity {entity} which is not supported by Presidio")
return entity
return entity
|