presidio / presidio_nlp_engine_config.py
omri374's picture
Upload 10 files
28a039d
raw
history blame
4.77 kB
from typing import Tuple
import spacy
from presidio_analyzer import RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider
def create_nlp_engine_with_spacy(
model_path: str,
) -> Tuple[NlpEngine, RecognizerRegistry]:
"""
Instantiate an NlpEngine with a spaCy model
:param model_path: spaCy model path.
"""
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
if not spacy.util.is_package(model_path):
spacy.cli.download(model_path)
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": model_path}],
}
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
return nlp_engine, registry
def create_nlp_engine_with_transformers(
model_path: str,
) -> Tuple[NlpEngine, RecognizerRegistry]:
"""
Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model.
The TransformersRecognizer would return results from Transformers models, the spaCy model
would return NlpArtifacts such as POS and lemmas.
:param model_path: HuggingFace model path.
"""
from transformers_rec import (
STANFORD_COFIGURATION,
BERT_DEID_CONFIGURATION,
TransformersRecognizer,
)
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
if not spacy.util.is_package("en_core_web_sm"):
spacy.cli.download("en_core_web_sm")
# Using a small spaCy model + a HF NER model
transformers_recognizer = TransformersRecognizer(model_path=model_path)
if model_path == "StanfordAIMI/stanford-deidentifier-base":
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
elif model_path == "obi/deid_roberta_i2b2":
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
else:
print(f"Warning: Model has no configuration, loading default.")
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
# Use small spaCy model, no need for both spacy and HF models
# The transformers model is used here as a recognizer, not as an NlpEngine
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(transformers_recognizer)
registry.remove_recognizer("SpacyRecognizer")
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
return nlp_engine, registry
def create_nlp_engine_with_flair(
model_path: str,
) -> Tuple[NlpEngine, RecognizerRegistry]:
"""
Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model.
The FlairRecognizer would return results from Flair models, the spaCy model
would return NlpArtifacts such as POS and lemmas.
:param model_path: Flair model path.
"""
from flair_recognizer import FlairRecognizer
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
if not spacy.util.is_package("en_core_web_sm"):
spacy.cli.download("en_core_web_sm")
# Using a small spaCy model + a Flair NER model
flair_recognizer = FlairRecognizer(model_path=model_path)
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(flair_recognizer)
registry.remove_recognizer("SpacyRecognizer")
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
return nlp_engine, registry
def create_nlp_engine_with_azure_text_analytics(ta_key: str, ta_endpoint: str):
"""
Instantiate an NlpEngine with a TextAnalyticsWrapper and a small spaCy model.
The TextAnalyticsWrapper would return results from calling Azure Text Analytics PII, the spaCy model
would return NlpArtifacts such as POS and lemmas.
:param ta_key: Azure Text Analytics key.
:param ta_endpoint: Azure Text Analytics endpoint.
"""
from text_analytics_wrapper import TextAnalyticsWrapper
if not ta_key or not ta_endpoint:
raise RuntimeError("Please fill in the Text Analytics endpoint details")
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
ta_recognizer = TextAnalyticsWrapper(ta_endpoint=ta_endpoint, ta_key=ta_key)
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
registry.add_recognizer(ta_recognizer)
registry.remove_recognizer("SpacyRecognizer")
return nlp_engine, registry