# Import generic wrappers | |
from transformers import AutoModel, AutoTokenizer | |
if __name__ == "__main__": | |
from flair.data import Sentence | |
from flair.models import SequenceTagger | |
# load tagger | |
tagger = SequenceTagger.load("flair/ner-english-large") | |
# make example sentence | |
sentence = Sentence("George Washington went to Washington") | |
# predict NER tags | |
tagger.predict(sentence) | |
# print sentence | |
print(sentence) | |
# print predicted NER spans | |
print("The following NER tags are found:") | |
# iterate over entities and print | |
for entity in sentence.get_spans("ner"): | |
print(entity) | |