Upload 10 files
Browse files- openai_fake_data_generator.py +33 -8
- presidio_helpers.py +41 -11
- presidio_nlp_engine_config.py +3 -1
- presidio_streamlit.py +198 -117
- requirements.txt +1 -0
- text_analytics_wrapper.py +3 -1
openai_fake_data_generator.py
CHANGED
@@ -1,25 +1,50 @@
|
|
|
|
|
|
|
|
1 |
import openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
4 |
"""Set the OpenAI API key.
|
5 |
-
:param
|
|
|
6 |
"""
|
7 |
-
openai.api_key = openai_key
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def call_completion_model(
|
11 |
-
prompt: str,
|
|
|
|
|
|
|
12 |
) -> str:
|
13 |
"""Creates a request for the OpenAI Completion service and returns the response.
|
14 |
|
15 |
:param prompt: The prompt for the completion model
|
16 |
:param model: OpenAI model name
|
17 |
:param max_tokens: Model's max_tokens parameter
|
|
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
return response["choices"][0].text
|
25 |
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
import openai
|
5 |
+
import logging
|
6 |
+
|
7 |
+
logger = logging.getLogger("presidio-streamlit")
|
8 |
+
|
9 |
+
OpenAIParams = namedtuple(
|
10 |
+
"open_ai_params",
|
11 |
+
["openai_key", "model", "api_base", "deployment_name", "api_version", "api_type"],
|
12 |
+
)
|
13 |
|
14 |
+
|
15 |
+
def set_openai_params(openai_params: OpenAIParams):
|
16 |
"""Set the OpenAI API key.
|
17 |
+
:param openai_params: OpenAIParams object with the following fields: key, model, api version, deployment_name,
|
18 |
+
The latter only relate to Azure OpenAI deployments.
|
19 |
"""
|
20 |
+
openai.api_key = openai_params.openai_key
|
21 |
+
openai.api_version = openai_params.api_version
|
22 |
+
if openai_params.api_base:
|
23 |
+
openai.api_base = openai_params.api_base
|
24 |
+
openai.api_type = openai_params.api_type
|
25 |
|
26 |
|
27 |
def call_completion_model(
|
28 |
+
prompt: str,
|
29 |
+
model: str = "text-davinci-003",
|
30 |
+
max_tokens: int = 512,
|
31 |
+
deployment_id: Optional[str] = None,
|
32 |
) -> str:
|
33 |
"""Creates a request for the OpenAI Completion service and returns the response.
|
34 |
|
35 |
:param prompt: The prompt for the completion model
|
36 |
:param model: OpenAI model name
|
37 |
:param max_tokens: Model's max_tokens parameter
|
38 |
+
:param deployment_id: Azure OpenAI deployment ID
|
39 |
"""
|
40 |
+
if deployment_id:
|
41 |
+
response = openai.Completion.create(
|
42 |
+
deployment_id=deployment_id, model=model, prompt=prompt, max_tokens=max_tokens
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
response = openai.Completion.create(
|
46 |
+
model=model, prompt=prompt, max_tokens=max_tokens
|
47 |
+
)
|
48 |
|
49 |
return response["choices"][0].text
|
50 |
|
presidio_helpers.py
CHANGED
@@ -2,22 +2,24 @@
|
|
2 |
Helper methods for the Presidio Streamlit app
|
3 |
"""
|
4 |
from typing import List, Optional, Tuple
|
5 |
-
|
6 |
import streamlit as st
|
7 |
from presidio_analyzer import (
|
8 |
AnalyzerEngine,
|
9 |
RecognizerResult,
|
10 |
RecognizerRegistry,
|
11 |
PatternRecognizer,
|
|
|
12 |
)
|
13 |
from presidio_analyzer.nlp_engine import NlpEngine
|
14 |
from presidio_anonymizer import AnonymizerEngine
|
15 |
from presidio_anonymizer.entities import OperatorConfig
|
16 |
|
17 |
from openai_fake_data_generator import (
|
18 |
-
|
19 |
call_completion_model,
|
20 |
create_prompt,
|
|
|
21 |
)
|
22 |
from presidio_nlp_engine_config import (
|
23 |
create_nlp_engine_with_spacy,
|
@@ -26,6 +28,8 @@ from presidio_nlp_engine_config import (
|
|
26 |
create_nlp_engine_with_azure_text_analytics,
|
27 |
)
|
28 |
|
|
|
|
|
29 |
|
30 |
@st.cache_resource
|
31 |
def nlp_engine_and_registry(
|
@@ -109,6 +113,11 @@ def analyze(
|
|
109 |
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
110 |
del kwargs["deny_list"]
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
return analyzer_engine(model_family, model_path, ta_key, ta_endpoint).analyze(
|
113 |
**kwargs
|
114 |
)
|
@@ -200,22 +209,30 @@ def annotate(text: str, analyze_results: List[RecognizerResult]):
|
|
200 |
def create_fake_data(
|
201 |
text: str,
|
202 |
analyze_results: List[RecognizerResult],
|
203 |
-
|
204 |
-
openai_model_name: str,
|
205 |
):
|
206 |
"""Creates a synthetic version of the text using OpenAI APIs"""
|
207 |
-
if not openai_key:
|
208 |
return "Please provide your OpenAI key"
|
209 |
results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
|
210 |
-
|
211 |
prompt = create_prompt(results.text)
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
213 |
return fake
|
214 |
|
215 |
|
216 |
@st.cache_data
|
217 |
-
def call_openai_api(
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
return fake_data
|
220 |
|
221 |
|
@@ -225,6 +242,19 @@ def create_ad_hoc_deny_list_recognizer(
|
|
225 |
if not deny_list:
|
226 |
return None
|
227 |
|
228 |
-
deny_list_recognizer = PatternRecognizer(
|
229 |
-
|
|
|
230 |
return deny_list_recognizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
Helper methods for the Presidio Streamlit app
|
3 |
"""
|
4 |
from typing import List, Optional, Tuple
|
5 |
+
import logging
|
6 |
import streamlit as st
|
7 |
from presidio_analyzer import (
|
8 |
AnalyzerEngine,
|
9 |
RecognizerResult,
|
10 |
RecognizerRegistry,
|
11 |
PatternRecognizer,
|
12 |
+
Pattern,
|
13 |
)
|
14 |
from presidio_analyzer.nlp_engine import NlpEngine
|
15 |
from presidio_anonymizer import AnonymizerEngine
|
16 |
from presidio_anonymizer.entities import OperatorConfig
|
17 |
|
18 |
from openai_fake_data_generator import (
|
19 |
+
set_openai_params,
|
20 |
call_completion_model,
|
21 |
create_prompt,
|
22 |
+
OpenAIParams,
|
23 |
)
|
24 |
from presidio_nlp_engine_config import (
|
25 |
create_nlp_engine_with_spacy,
|
|
|
28 |
create_nlp_engine_with_azure_text_analytics,
|
29 |
)
|
30 |
|
31 |
+
logger = logging.getLogger("presidio-streamlit")
|
32 |
+
|
33 |
|
34 |
@st.cache_resource
|
35 |
def nlp_engine_and_registry(
|
|
|
113 |
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
114 |
del kwargs["deny_list"]
|
115 |
|
116 |
+
if "regex_params" in kwargs and len(kwargs["regex_params"]) > 0:
|
117 |
+
ad_hoc_recognizer = create_ad_hoc_regex_recognizer(*kwargs["regex_params"])
|
118 |
+
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
119 |
+
del kwargs["regex_params"]
|
120 |
+
|
121 |
return analyzer_engine(model_family, model_path, ta_key, ta_endpoint).analyze(
|
122 |
**kwargs
|
123 |
)
|
|
|
209 |
def create_fake_data(
|
210 |
text: str,
|
211 |
analyze_results: List[RecognizerResult],
|
212 |
+
openai_params: OpenAIParams,
|
|
|
213 |
):
|
214 |
"""Creates a synthetic version of the text using OpenAI APIs"""
|
215 |
+
if not openai_params.openai_key:
|
216 |
return "Please provide your OpenAI key"
|
217 |
results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
|
218 |
+
set_openai_params(openai_params)
|
219 |
prompt = create_prompt(results.text)
|
220 |
+
print(f"Prompt: {prompt}")
|
221 |
+
fake = call_openai_api(
|
222 |
+
prompt=prompt,
|
223 |
+
openai_model_name=openai_params.model,
|
224 |
+
openai_deployment_name=openai_params.deployment_name,
|
225 |
+
)
|
226 |
return fake
|
227 |
|
228 |
|
229 |
@st.cache_data
|
230 |
+
def call_openai_api(
|
231 |
+
prompt: str, openai_model_name: str, openai_deployment_name: Optional[str] = None
|
232 |
+
) -> str:
|
233 |
+
fake_data = call_completion_model(
|
234 |
+
prompt, model=openai_model_name, deployment_id=openai_deployment_name
|
235 |
+
)
|
236 |
return fake_data
|
237 |
|
238 |
|
|
|
242 |
if not deny_list:
|
243 |
return None
|
244 |
|
245 |
+
deny_list_recognizer = PatternRecognizer(
|
246 |
+
supported_entity="GENERIC_PII", deny_list=deny_list
|
247 |
+
)
|
248 |
return deny_list_recognizer
|
249 |
+
|
250 |
+
|
251 |
+
def create_ad_hoc_regex_recognizer(
|
252 |
+
regex: str, entity_type: str, score: float, context: Optional[List[str]] = None
|
253 |
+
) -> Optional[PatternRecognizer]:
|
254 |
+
if not regex:
|
255 |
+
return None
|
256 |
+
pattern = Pattern(name="Regex pattern", regex=regex, score=score)
|
257 |
+
regex_recognizer = PatternRecognizer(
|
258 |
+
supported_entity=entity_type, patterns=[pattern], context=context
|
259 |
+
)
|
260 |
+
return regex_recognizer
|
presidio_nlp_engine_config.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
from typing import Tuple
|
2 |
-
|
3 |
import spacy
|
4 |
from presidio_analyzer import RecognizerRegistry
|
5 |
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider
|
6 |
|
|
|
|
|
7 |
|
8 |
def create_nlp_engine_with_spacy(
|
9 |
model_path: str,
|
|
|
1 |
from typing import Tuple
|
2 |
+
import logging
|
3 |
import spacy
|
4 |
from presidio_analyzer import RecognizerRegistry
|
5 |
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider
|
6 |
|
7 |
+
logger = logging.getLogger("presidio-streamlit")
|
8 |
+
|
9 |
|
10 |
def create_nlp_engine_with_spacy(
|
11 |
model_path: str,
|
presidio_streamlit.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
"""Streamlit app for Presidio."""
|
|
|
2 |
import os
|
3 |
|
4 |
import pandas as pd
|
5 |
import streamlit as st
|
6 |
import streamlit.components.v1 as components
|
7 |
-
|
8 |
from annotated_text import annotated_text
|
9 |
from streamlit_tags import st_tags
|
10 |
|
|
|
11 |
from presidio_helpers import (
|
12 |
get_supported_entities,
|
13 |
analyze,
|
@@ -18,29 +20,30 @@ from presidio_helpers import (
|
|
18 |
nlp_engine_and_registry,
|
19 |
)
|
20 |
|
21 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Sidebar
|
24 |
st.sidebar.header(
|
25 |
"""
|
26 |
-
PII De-Identification with Microsoft Presidio
|
27 |
"""
|
28 |
)
|
29 |
|
30 |
-
st.sidebar.info(
|
31 |
-
"Presidio is an open source customizable framework for PII detection and de-identification\n"
|
32 |
-
"[Code](https://aka.ms/presidio) | "
|
33 |
-
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
|
34 |
-
"[Installation](https://microsoft.github.io/presidio/installation/) | "
|
35 |
-
"[FAQ](https://microsoft.github.io/presidio/faq/)",
|
36 |
-
icon="ℹ️",
|
37 |
-
)
|
38 |
-
|
39 |
-
st.sidebar.markdown(
|
40 |
-
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
|
41 |
-
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
|
42 |
-
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
|
43 |
-
)
|
44 |
|
45 |
model_help_text = """
|
46 |
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
|
@@ -48,51 +51,56 @@ model_help_text = """
|
|
48 |
as well as service such as Azure Text Analytics PII.
|
49 |
"""
|
50 |
st_ta_key = st_ta_endpoint = ""
|
51 |
-
st_model = "en_core_web_lg"
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
"NER model package",
|
55 |
-
|
56 |
index=2,
|
57 |
-
help=
|
58 |
)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
["obi/deid_roberta_i2b2", "StanfordAIMI/stanford-deidentifier-base", "Other"],
|
70 |
-
help=model_help_text,
|
71 |
-
)
|
72 |
-
elif st_model_package == "flair":
|
73 |
-
st_model = st.sidebar.selectbox(
|
74 |
-
"NER model for PII detection",
|
75 |
-
["flair/ner-english-large", "Other"],
|
76 |
-
help=model_help_text,
|
77 |
-
)
|
78 |
-
elif st_model_package == "Azure Text Analytics":
|
79 |
-
st_model = st.sidebar.selectbox(
|
80 |
-
"NER model for PII detection",
|
81 |
-
["Azure Text Analytics PII"],
|
82 |
-
help=model_help_text,
|
83 |
-
)
|
84 |
-
st_ta_key = st.sidebar.text_input("Text Analytics Key", type="password")
|
85 |
-
st_ta_endpoint = st.sidebar.text_input("Text Analytics Endpoint")
|
86 |
|
87 |
if st_model == "Other":
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
|
93 |
st.sidebar.warning("Note: Models might take some time to download. ")
|
94 |
|
95 |
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint)
|
|
|
96 |
|
97 |
st_operator = st.sidebar.selectbox(
|
98 |
"De-identification approach",
|
@@ -112,8 +120,10 @@ st_operator = st.sidebar.selectbox(
|
|
112 |
st_mask_char = "*"
|
113 |
st_number_of_chars = 15
|
114 |
st_encrypt_key = "WmZq4t7w!z%C&F)J"
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
|
118 |
if st_operator == "mask":
|
119 |
st_number_of_chars = st.sidebar.number_input(
|
@@ -125,6 +135,22 @@ if st_operator == "mask":
|
|
125 |
elif st_operator == "encrypt":
|
126 |
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
|
127 |
elif st_operator == "synthesize":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
st_openai_key = st.sidebar.text_input(
|
129 |
"OPENAI_KEY",
|
130 |
value=os.getenv("OPENAI_KEY", default=""),
|
@@ -133,9 +159,21 @@ elif st_operator == "synthesize":
|
|
133 |
)
|
134 |
st_openai_model = st.sidebar.text_input(
|
135 |
"OpenAI model for text synthesis",
|
136 |
-
value=
|
137 |
help="See more here: https://platform.openai.com/docs/models/",
|
138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
st_threshold = st.sidebar.slider(
|
140 |
label="Acceptance threshold",
|
141 |
min_value=0.0,
|
@@ -153,24 +191,60 @@ st_return_decision_process = st.sidebar.checkbox(
|
|
153 |
|
154 |
# Allow and deny lists
|
155 |
st_deny_allow_expander = st.sidebar.expander(
|
156 |
-
"
|
157 |
expanded=False,
|
158 |
)
|
159 |
|
160 |
with st_deny_allow_expander:
|
161 |
-
st_allow_list = st_tags(
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
st_deny_list = st_tags(
|
165 |
-
|
|
|
|
|
|
|
|
|
166 |
# Main panel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
168 |
nlp_engine, registry = nlp_engine_and_registry(*analyzer_params)
|
169 |
|
170 |
-
analyzer = analyzer_engine(*analyzer_params)
|
171 |
analyzer_load_state.empty()
|
172 |
|
173 |
-
|
174 |
# Choose entities
|
175 |
st_entities_expander = st.sidebar.expander("Choose entities to look for")
|
176 |
st_entities = st_entities_expander.multiselect(
|
@@ -182,6 +256,12 @@ st_entities = st_entities_expander.multiselect(
|
|
182 |
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
|
183 |
)
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# Read default text
|
186 |
with open("demo_text.txt") as f:
|
187 |
demo_text = f.readlines()
|
@@ -190,11 +270,9 @@ with open("demo_text.txt") as f:
|
|
190 |
col1, col2 = st.columns(2)
|
191 |
|
192 |
# Before:
|
193 |
-
col1.subheader("Input
|
194 |
st_text = col1.text_area(
|
195 |
-
label="Enter text",
|
196 |
-
value="".join(demo_text),
|
197 |
-
height=400,
|
198 |
)
|
199 |
|
200 |
|
@@ -210,62 +288,65 @@ st_analyze_results = analyze(
|
|
210 |
)
|
211 |
|
212 |
# After
|
213 |
-
if
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
if
|
247 |
-
|
248 |
-
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
249 |
-
|
250 |
-
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
251 |
-
{
|
252 |
-
"entity_type": "Entity type",
|
253 |
-
"text": "Text",
|
254 |
-
"start": "Start",
|
255 |
-
"end": "End",
|
256 |
-
"score": "Confidence",
|
257 |
-
},
|
258 |
-
axis=1,
|
259 |
)
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
)
|
265 |
-
df_subset =
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
components.html(
|
271 |
"""
|
|
|
1 |
"""Streamlit app for Presidio."""
|
2 |
+
import logging
|
3 |
import os
|
4 |
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
import streamlit.components.v1 as components
|
8 |
+
import dotenv
|
9 |
from annotated_text import annotated_text
|
10 |
from streamlit_tags import st_tags
|
11 |
|
12 |
+
from openai_fake_data_generator import OpenAIParams
|
13 |
from presidio_helpers import (
|
14 |
get_supported_entities,
|
15 |
analyze,
|
|
|
20 |
nlp_engine_and_registry,
|
21 |
)
|
22 |
|
23 |
+
st.set_page_config(
|
24 |
+
page_title="Presidio demo",
|
25 |
+
layout="wide",
|
26 |
+
initial_sidebar_state="expanded",
|
27 |
+
menu_items={
|
28 |
+
"About": "https://microsoft.github.io/presidio/",
|
29 |
+
},
|
30 |
+
)
|
31 |
+
|
32 |
+
dotenv.load_dotenv()
|
33 |
+
logger = logging.getLogger("presidio-streamlit")
|
34 |
+
|
35 |
+
|
36 |
+
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False)
|
37 |
+
|
38 |
+
can_present_results = True
|
39 |
|
40 |
# Sidebar
|
41 |
st.sidebar.header(
|
42 |
"""
|
43 |
+
PII De-Identification with [Microsoft Presidio](https://microsoft.github.io/presidio/)
|
44 |
"""
|
45 |
)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
model_help_text = """
|
49 |
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
|
|
|
51 |
as well as service such as Azure Text Analytics PII.
|
52 |
"""
|
53 |
st_ta_key = st_ta_endpoint = ""
|
|
|
54 |
|
55 |
+
model_list = [
|
56 |
+
"spaCy/en_core_web_lg",
|
57 |
+
"flair/ner-english-large",
|
58 |
+
"HuggingFace/obi/deid_roberta_i2b2",
|
59 |
+
"HuggingFace/StanfordAIMI/stanford-deidentifier-base",
|
60 |
+
"Azure Text Analytics PII",
|
61 |
+
"Other",
|
62 |
+
]
|
63 |
+
if allow_other_models:
|
64 |
+
model_list.pop()
|
65 |
+
# Select model
|
66 |
+
st_model = st.sidebar.selectbox(
|
67 |
"NER model package",
|
68 |
+
model_list,
|
69 |
index=2,
|
70 |
+
help=model_help_text,
|
71 |
)
|
72 |
|
73 |
+
# Extract model package.
|
74 |
+
st_model_package = st_model.split("/")[0]
|
75 |
+
|
76 |
+
# Remove package prefix (if needed)
|
77 |
+
st_model = (
|
78 |
+
st_model
|
79 |
+
if st_model_package not in ("spaCy", "HuggingFace")
|
80 |
+
else "/".join(st_model.split("/")[1:])
|
81 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if st_model == "Other":
|
84 |
+
st_model_package = st.sidebar.selectbox(
|
85 |
+
"NER model OSS package", options=["spaCy", "Flair", "HuggingFace"]
|
86 |
+
)
|
87 |
+
st_model = st.sidebar.text_input(f"NER model name", value="")
|
88 |
+
|
89 |
+
if st_model == "Azure Text Analytics PII":
|
90 |
+
st_ta_key = st.sidebar.text_input(
|
91 |
+
f"Text Analytics key", value=os.getenv("TA_KEY", ""), type="password"
|
92 |
+
)
|
93 |
+
st_ta_endpoint = st.sidebar.text_input(
|
94 |
+
f"Text Analytics endpoint",
|
95 |
+
value=os.getenv("TA_ENDPOINT", default=""),
|
96 |
+
help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", # noqa: E501
|
97 |
)
|
98 |
|
99 |
|
100 |
st.sidebar.warning("Note: Models might take some time to download. ")
|
101 |
|
102 |
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint)
|
103 |
+
logger.debug(f"analyzer_params: {analyzer_params}")
|
104 |
|
105 |
st_operator = st.sidebar.selectbox(
|
106 |
"De-identification approach",
|
|
|
120 |
st_mask_char = "*"
|
121 |
st_number_of_chars = 15
|
122 |
st_encrypt_key = "WmZq4t7w!z%C&F)J"
|
123 |
+
|
124 |
+
open_ai_params = None
|
125 |
+
|
126 |
+
logger.debug(f"st_operator: {st_operator}")
|
127 |
|
128 |
if st_operator == "mask":
|
129 |
st_number_of_chars = st.sidebar.number_input(
|
|
|
135 |
elif st_operator == "encrypt":
|
136 |
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
|
137 |
elif st_operator == "synthesize":
|
138 |
+
if os.getenv("OPENAI_TYPE", default="openai") == "Azure":
|
139 |
+
openai_api_type = "azure"
|
140 |
+
st_openai_api_base = st.sidebar.text_input(
|
141 |
+
"Azure OpenAI base URL",
|
142 |
+
value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""),
|
143 |
+
)
|
144 |
+
st_deployment_name = st.sidebar.text_input(
|
145 |
+
"Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="")
|
146 |
+
)
|
147 |
+
st_openai_version = st.sidebar.text_input(
|
148 |
+
"OpenAI version",
|
149 |
+
value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"),
|
150 |
+
)
|
151 |
+
else:
|
152 |
+
st_openai_version = openai_api_type = st_openai_api_base = None
|
153 |
+
st_deployment_name = ""
|
154 |
st_openai_key = st.sidebar.text_input(
|
155 |
"OPENAI_KEY",
|
156 |
value=os.getenv("OPENAI_KEY", default=""),
|
|
|
159 |
)
|
160 |
st_openai_model = st.sidebar.text_input(
|
161 |
"OpenAI model for text synthesis",
|
162 |
+
value=os.getenv("OPENAI_MODEL", default="text-davinci-003"),
|
163 |
help="See more here: https://platform.openai.com/docs/models/",
|
164 |
)
|
165 |
+
|
166 |
+
open_ai_params = OpenAIParams(
|
167 |
+
openai_key=st_openai_key,
|
168 |
+
model=st_openai_model,
|
169 |
+
api_base=st_openai_api_base,
|
170 |
+
deployment_name=st_deployment_name,
|
171 |
+
api_version=st_openai_version,
|
172 |
+
api_type=openai_api_type,
|
173 |
+
)
|
174 |
+
|
175 |
+
can_present_results = True if st_openai_key else False
|
176 |
+
|
177 |
st_threshold = st.sidebar.slider(
|
178 |
label="Acceptance threshold",
|
179 |
min_value=0.0,
|
|
|
191 |
|
192 |
# Allow and deny lists
|
193 |
st_deny_allow_expander = st.sidebar.expander(
|
194 |
+
"Allowlists and denylists",
|
195 |
expanded=False,
|
196 |
)
|
197 |
|
198 |
with st_deny_allow_expander:
|
199 |
+
st_allow_list = st_tags(
|
200 |
+
label="Add words to the allowlist", text="Enter word and press enter."
|
201 |
+
)
|
202 |
+
st.caption(
|
203 |
+
"Allowlists contain words that are not considered PII, but are detected as such."
|
204 |
+
)
|
205 |
|
206 |
+
st_deny_list = st_tags(
|
207 |
+
label="Add words to the denylist", text="Enter word and press enter."
|
208 |
+
)
|
209 |
+
st.caption(
|
210 |
+
"Denylists contain words that are considered PII, but are not detected as such."
|
211 |
+
)
|
212 |
# Main panel
|
213 |
+
|
214 |
+
with st.expander("About this demo", expanded=False):
|
215 |
+
st.info(
|
216 |
+
"""Presidio is an open source customizable framework for PII detection and de-identification.
|
217 |
+
\n\n[Code](https://aka.ms/presidio) |
|
218 |
+
[Tutorial](https://microsoft.github.io/presidio/tutorial/) |
|
219 |
+
[Installation](https://microsoft.github.io/presidio/installation/) |
|
220 |
+
[FAQ](https://microsoft.github.io/presidio/faq/) |"""
|
221 |
+
)
|
222 |
+
|
223 |
+
st.info(
|
224 |
+
"""
|
225 |
+
Use this demo to:
|
226 |
+
- Experiment with different off-the-shelf models and NLP packages.
|
227 |
+
- Explore the different de-identification options, including redaction, masking, encryption and more.
|
228 |
+
- Generate synthetic text with Microsoft Presidio and OpenAI.
|
229 |
+
- Configure allow and deny lists.
|
230 |
+
|
231 |
+
This demo website shows some of Presidio's capabilities.
|
232 |
+
[Visit our website](https://microsoft.github.io/presidio) for more info,
|
233 |
+
samples and deployment options.
|
234 |
+
"""
|
235 |
+
)
|
236 |
+
|
237 |
+
st.markdown(
|
238 |
+
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
|
239 |
+
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
|
240 |
+
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
|
241 |
+
)
|
242 |
+
|
243 |
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
244 |
nlp_engine, registry = nlp_engine_and_registry(*analyzer_params)
|
245 |
|
|
|
246 |
analyzer_load_state.empty()
|
247 |
|
|
|
248 |
# Choose entities
|
249 |
st_entities_expander = st.sidebar.expander("Choose entities to look for")
|
250 |
st_entities = st_entities_expander.multiselect(
|
|
|
256 |
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
|
257 |
)
|
258 |
|
259 |
+
|
260 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
261 |
+
analyzer = analyzer_engine(*analyzer_params)
|
262 |
+
analyzer_load_state.empty()
|
263 |
+
|
264 |
+
|
265 |
# Read default text
|
266 |
with open("demo_text.txt") as f:
|
267 |
demo_text = f.readlines()
|
|
|
270 |
col1, col2 = st.columns(2)
|
271 |
|
272 |
# Before:
|
273 |
+
col1.subheader("Input")
|
274 |
st_text = col1.text_area(
|
275 |
+
label="Enter text", value="".join(demo_text), height=400, key="text_input"
|
|
|
|
|
276 |
)
|
277 |
|
278 |
|
|
|
288 |
)
|
289 |
|
290 |
# After
|
291 |
+
if can_present_results:
|
292 |
+
if st_operator not in ("highlight", "synthesize"):
|
293 |
+
with col2:
|
294 |
+
st.subheader(f"Output")
|
295 |
+
st_anonymize_results = anonymize(
|
296 |
+
text=st_text,
|
297 |
+
operator=st_operator,
|
298 |
+
mask_char=st_mask_char,
|
299 |
+
number_of_chars=st_number_of_chars,
|
300 |
+
encrypt_key=st_encrypt_key,
|
301 |
+
analyze_results=st_analyze_results,
|
302 |
+
)
|
303 |
+
st.text_area(
|
304 |
+
label="De-identified", value=st_anonymize_results.text, height=400
|
305 |
+
)
|
306 |
+
elif st_operator == "synthesize":
|
307 |
+
with col2:
|
308 |
+
st.subheader(f"OpenAI Generated output")
|
309 |
+
fake_data = create_fake_data(
|
310 |
+
st_text,
|
311 |
+
st_analyze_results,
|
312 |
+
open_ai_params,
|
313 |
+
)
|
314 |
+
st.text_area(label="Synthetic data", value=fake_data, height=400)
|
315 |
+
else:
|
316 |
+
st.subheader("Highlighted")
|
317 |
+
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results)
|
318 |
+
# annotated_tokens
|
319 |
+
annotated_text(*annotated_tokens)
|
320 |
+
|
321 |
+
# table result
|
322 |
+
st.subheader(
|
323 |
+
"Findings"
|
324 |
+
if not st_return_decision_process
|
325 |
+
else "Findings with decision factors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
)
|
327 |
+
if st_analyze_results:
|
328 |
+
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
329 |
+
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
330 |
+
|
331 |
+
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
332 |
+
{
|
333 |
+
"entity_type": "Entity type",
|
334 |
+
"text": "Text",
|
335 |
+
"start": "Start",
|
336 |
+
"end": "End",
|
337 |
+
"score": "Confidence",
|
338 |
+
},
|
339 |
+
axis=1,
|
340 |
)
|
341 |
+
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
342 |
+
if st_return_decision_process:
|
343 |
+
analysis_explanation_df = pd.DataFrame.from_records(
|
344 |
+
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
345 |
+
)
|
346 |
+
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
|
347 |
+
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
|
348 |
+
else:
|
349 |
+
st.text("No findings")
|
350 |
|
351 |
components.html(
|
352 |
"""
|
requirements.txt
CHANGED
@@ -3,6 +3,7 @@ presidio-anonymizer
|
|
3 |
streamlit
|
4 |
streamlit-tags
|
5 |
pandas
|
|
|
6 |
st-annotated-text
|
7 |
torch
|
8 |
transformers
|
|
|
3 |
streamlit
|
4 |
streamlit-tags
|
5 |
pandas
|
6 |
+
dotenv
|
7 |
st-annotated-text
|
8 |
torch
|
9 |
transformers
|
text_analytics_wrapper.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from typing import List, Optional
|
3 |
-
|
4 |
import dotenv
|
5 |
from azure.ai.textanalytics import TextAnalyticsClient
|
6 |
from azure.core.credentials import AzureKeyCredential
|
@@ -8,6 +8,8 @@ from azure.core.credentials import AzureKeyCredential
|
|
8 |
from presidio_analyzer import EntityRecognizer, RecognizerResult, AnalysisExplanation
|
9 |
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
|
|
|
|
|
11 |
class TextAnalyticsWrapper(EntityRecognizer):
|
12 |
from azure.ai.textanalytics._models import PiiEntityCategory
|
13 |
TA_SUPPORTED_ENTITIES = [r.value for r in PiiEntityCategory]
|
|
|
1 |
import os
|
2 |
from typing import List, Optional
|
3 |
+
import logging
|
4 |
import dotenv
|
5 |
from azure.ai.textanalytics import TextAnalyticsClient
|
6 |
from azure.core.credentials import AzureKeyCredential
|
|
|
8 |
from presidio_analyzer import EntityRecognizer, RecognizerResult, AnalysisExplanation
|
9 |
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
|
11 |
+
logger = logging.getLogger("presidio-streamlit")
|
12 |
+
|
13 |
class TextAnalyticsWrapper(EntityRecognizer):
|
14 |
from azure.ai.textanalytics._models import PiiEntityCategory
|
15 |
TA_SUPPORTED_ENTITIES = [r.value for r in PiiEntityCategory]
|