nCloze / app.py
ondovb's picture
cpu note
236be87
raw
history blame
20.1 kB
import streamlit as st
import numpy as np
from numpy import ndarray
import pandas as pd
import torch as T
from torch import Tensor, device
from transformers import AutoModelForMaskedLM, AutoTokenizer, AutoConfig, AutoModel
from nltk.corpus import stopwords
from nltk.stem.porter import *
import json
import nltk
from nltk import FreqDist
from nltk.corpus import gutenberg
import urllib.request
from string import punctuation
from math import log,exp,sqrt
import random
from time import sleep
nltk.download('stopwords')
nltk.download('gutenberg')
cos = T.nn.CosineSimilarity(dim=0)
urllib.request.urlretrieve("https://github.com/ondovb/nCloze/raw/1b57ab719c367c070aeba8a53e71a536ce105091/dict-info.txt", 'dict-info.txt')
sleep(1)
urllib.request.urlretrieve("https://github.com/ondovb/nCloze/raw/1b57ab719c367c070aeba8a53e71a536ce105091/dict-unix.txt", 'dict-unix.txt')
sleep(1)
urllib.request.urlretrieve("https://github.com/ondovb/nCloze/raw/1b57ab719c367c070aeba8a53e71a536ce105091/profanity.json", 'profanity.json')
#gdown.download('https://drive.google.com/uc?id=16j6oQbqIUfdY1kMFOonXVDdG7A0C6CXD&confirm=t',use_cookies=True)
#gdown.download(id='13-3DyP4Df1GzrdQ_W4fLhPYAA1Gscg1j',use_cookies=True)
#gdown.download(id='180X6ztER2lKVP_dKinSJNE0XRtmnixAM',use_cookies=True)
CONTEXTUAL_EMBEDDING_LAYERS = [12]
EXTEND_SUBWORDS=True
MAX_SUBWORDS=1
DEBUG_OUTPUT=True
DISTRACTORS_FROM_TEXT=False
MIN_SENT_WORDS = 7
# Frequencies are used to decide if a distractor candidate might be a subword
stemmer = PorterStemmer()
freq = FreqDist(i.lower() for i in gutenberg.words())
print(freq.most_common()[:5])
words_unix = set(line.strip() for line in open('dict-unix.txt'))
words_info = set(line.strip() for line in open('dict-info.txt'))
words_small = words_unix.intersection(words_info)
words_large = words_unix.union(words_info)
f = open('profanity.json')
profanity = json.load(f)
import stanza
nlp = stanza.Pipeline(lang='en', processors='tokenize')#, model_dir='/data/ondovbd/stanza_resources')
nltk.download('punkt')
nltk_sent_toker = nltk.data.load('tokenizers/punkt/english.pickle')
def is_word(str):
'''Check if word exists in dictionary'''
splt = str.lower().split("'")
if len(splt) > 2:
return False
elif len(splt) == 2:
return is_word(splt[0]) and (splt[1] in ['t','nt','s','ll'])
elif '-' in str:
for word in str.split('-'):
if not is_word(word):
return False
return True
else:
return str.lower() in words_unix or str.lower() in words_info
def get_emb(snt_toks, tgt_toks, layers=None):
'''Embeds a group of subword tokens in place of a mask, using the entire
sentence for context. Returns the average of the target token embeddings,
which are summed over the hidden layers.
snt_toks: the tokenized sentence, including the mask token
tgt_toks: the tokens (subwords) to replace the mask token
layers (optional): which hidden layers to sum (list of indices)'''
mask_idx = snt_toks.index(toker.mask_token_id)
snt_toks = snt_toks.copy()
while mask_idx + len(tgt_toks)-1 >= 512:
# Shift text by 100 words
snt_toks = snt_toks[100:]
mask_idx -= 100
snt_toks[mask_idx:mask_idx+1] = tgt_toks
snt_toks = snt_toks[:512]
with T.no_grad():
if T.cuda.is_available():
T.tensor([snt_toks]).cuda()
T.tensor([[1]*len(snt_toks)]).cuda()
output = model(T.tensor([snt_toks]), T.tensor([[1]*len(snt_toks)]), output_hidden_states=True)
layers = CONTEXTUAL_EMBEDDING_LAYERS if layers is None else layers
output = T.stack([output.hidden_states[i] for i in layers]).sum(0).squeeze()
# Only select the tokens that constitute the requested word
return output[mask_idx:mask_idx+len(tgt_toks)].mean(dim=0)
def energy(ctx, scaled_dists, scaled_sims, choices, words, ans):
#Calculate and add cosine similarity scores
'''Cost function to help choose best distractors'''
#e = [embs[i] for i in choices] #+ [sem_emb_ans]
#w = [words[i] for i in choices] #+ [ans]
hm_sim = 0
e_ctx = 0
for i in choices:
hm_sim += 1./scaled_sims[i]
e_ctx += ctx[i]
e_sim = float(len(choices))/hm_sim
hm_emb = 0
count = 0
c = choices + [len(ctx)]
for i in range(len(c)):
for j in range(i):
d = scaled_dists['%s-%s'%(max(c[i],c[j]), min(c[i], c[j]))]
#print(c[i], c[j], d)
hm_emb += 1./d
count += 1
e_emb = float(count)/hm_emb
return float(e_emb), e_ctx, float(e_sim)
def anneal(probs_sent_context, probs_para_context, embs, emb_ans, words, k, ans):
'''find k distractor indices that are optimally high probability and distant
in embedding space'''
# probs_sent_context = T.as_tensor(probs_sent_context) / sum(probs_sent_context)
m = len(probs_sent_context)
# probs_para_context = T.as_tensor(probs_para_context) / sum(probs_para_context)
its = 1000
n = len(probs_para_context)
choices = list(range(k))
dists = {}
embsa = embs + [emb_ans]
for i in range(len(embsa)):
for j in range(i):
dists['%s-%s'%(i,j)] = 1-cos(embsa[i], embsa[j]) # cosine "distance"
#print(words[i], words[j], 1-cos(embs[i], embs[j]))
dist_min = T.min(T.tensor(list(dists.values())))
dist_max = T.max(T.tensor(list(dists.values())))
for key, dist in dists.items():
dists[key] = (dist - dist_min)/(dist_max-dist_min)
sims = T.tensor([cos(emb_ans, emb) for emb in embs])
scaled_sims = (sims - T.min(sims))/(T.max(sims)-T.min(sims))
ctx = T.tensor(probs_sent_context).log()-ALPHA*T.tensor(probs_para_context).log()
ctx = (ctx-T.min(ctx))/(T.max(ctx)-T.min(ctx))
e_emb, e_ctx, e_sim = energy(ctx, dists, scaled_sims, choices, words, ans)
e = e_ctx + BETA * e_emb
#e = SIM_ANNEAL_EMB_WEIGHT * e_emb + e_prob
for i in range(its):
t = 1.-(i)/its
mut_idx = random.randrange(k) # which choice to mutate
orig = choices[mut_idx]
new = orig
while (new in choices): # mutate choice until not in current list
new = random.randrange(m)
choices[mut_idx] = new
e_emb, e_ctx, e_sim = energy(ctx, dists, scaled_sims, choices, words, ans)
e_new = e_ctx + BETA * e_emb
delta = e_new - e
exponent = delta/t
if exponent < -50:
exponent = -50 # avoid underflow
if delta > 0 or exp(exponent) > random.random():
e = e_new # accept new state
else:
choices[mut_idx] = orig
if DEBUG_OUTPUT:
print([words[j] for j in choices] + [ans], "e: %f"%(e))
return choices
def get_softmax_logits(toks, n_masks = 1, sub_ids = []):
# Tokenize text - Keep length of inpts at or below 512 (including answer token length artifically added at end)
msk_idx = toks.index(toker.mask_token_id)
toks = toks.copy()
toks[msk_idx:msk_idx+1] = [toker.mask_token_id] * n_masks + sub_ids
# If the masked_token is over 512 (excluding answer token length artifically added at end) tokens away
while msk_idx >= 512:
# Shift text by 100 words
toks = toks[100:]
msk_idx -= 100
toks = toks[:512]
# Find the predicted words for the fill-in-the-blank mask term based on sentence-context alone
with T.no_grad():
t=T.tensor([toks])
m=T.tensor([[1]*len(toks)])
if T.cuda.is_available():
t.cuda()
m.cuda()
output = model(t, m)
sm = T.softmax(output.logits[0, msk_idx:msk_idx+n_masks, :], dim=1)
return sm
e=1e-10
def candidates(text, answer):
'''Create list of unique distractors that does not include the actual answer'''
if DEBUG_OUTPUT:
print(text)
# Get only sentence with blanked text to tokenize
doc = nlp(text)
#sents = [sentence.text for sentence in doc.sentences]
sents = nltk_sent_toker.tokenize(text)
msk_snt_idx = [i for i in range(len(sents)) if toker.mask_token in sents[i]][0]
just_masked_sentence = sents[msk_snt_idx]
prv_snts = sents[:msk_snt_idx]
nxt_snts = sents[msk_snt_idx+1:]
if len(just_masked_sentence.split(' ')) < MIN_SENT_WORDS and len(prv_snts):
just_masked_sentence = ' '.join([prv_snts.pop(), just_masked_sentence])
while len(just_masked_sentence.split(' ')) < MIN_SENT_WORDS and (len(prv_snts) or len(nxt_snts)):
if T.rand(1) < 0.5 and len(prv_snts):
just_masked_sentence = ' '.join([prv_snts.pop(), just_masked_sentence])
elif len(nxt_snts):
just_masked_sentence = ' '.join([just_masked_sentence, nxt_snts.pop(0)])
ctx = just_masked_sentence
while len(ctx.split(' ')) < 3 * len(just_masked_sentence.split(' ')) and (len(prv_snts) or len(nxt_snts)):
if len(prv_snts):
ctx = ' '.join([prv_snts.pop(), ctx])
if len(nxt_snts):
ctx = ' '.join([ctx, nxt_snts.pop(0)])
# just_masked_sentence = ' '.join([just_masked_sentence.replace('<mask>', 'banana'),
# just_masked_sentence.replace('<mask>', 'banana'),
## just_masked_sentence,
# just_masked_sentence.replace('<mask>', 'banana'),
# just_masked_sentence.replace('<mask>', 'banana')])
#just_masked_sentence = ' '.join([just_masked_sentence, just_masked_sentence, just_masked_sentence, just_masked_sentence, just_masked_sentence])
tiled = just_masked_sentence
while len(tiled) < len(text):
tiled += ' ' + just_masked_sentence
just_masked_sentence = tiled
if DEBUG_OUTPUT:
print(ctx)
print(text)
print(just_masked_sentence)
toks_para = toker.encode(text)
toks_sent = toker.encode(just_masked_sentence)
# Get softmaxed logits from sentence alone and full-text
# sent_sm, sent_pos, sent_ids = get_span_logits(just_masked_sentence, answer)
# para_sm, para_pos, para_ids = get_span_logits(text, answer)
sent_sms_all = []
para_sms_all = []
para_sms_right = []
for i in range(MAX_SUBWORDS):
para_sms = get_softmax_logits(toks_para, i + 1)
para_sms_all.append(para_sms)
sent_sms = get_softmax_logits(toks_sent, i + 1)
sent_sms_all.append(sent_sms)
para_sms_right.append(T.exp((sent_sms[i].log()+para_sms[i].log())/2) * (suffix_mask_inv if i == 0 else suffix_mask))
# Create 2 lists: (1) notes highest probability for each token across n-mask lists if token is suffix and (2) notes number of mask terms to add
para_sm_best, para_pos_best = T.max(T.vstack(para_sms_right), 0)
distractors = []
stems = []
embs = []
sent_probs = []
para_probs = []
ans_stem = stemmer.stem(answer.lower())
emb_ans = get_emb(toks_para, toker(answer)['input_ids'][1:-1])
para_words = text.lower().split(' ')
blank_word_idx = [idx for idx, word in enumerate(text.split(' ')) if toker.mask_token in word][0] # Need to remove punctuation
if (blank_word_idx - 1) < 0:
prev_word = 'beforeanytext'
else:
prev_word = para_words[blank_word_idx-1]
if (blank_word_idx + 1) >= len(para_words):
next_word = 'afteralltext'
else:
next_word = para_words[blank_word_idx+1]
# Need to check if the token is outside of the tokenizer based on predictions being made at all
if len(para_sms_all[0]) > 0:
top_ctx = T.topk((sent_sms_all[0][0]*word_mask+e).log() - ALPHA * (para_sms_all[0][0]*word_mask+e).log(), len(para_sms_all[0][0]), dim=0)
para_top_ids = top_ctx.indices.tolist()
para_top_probs = top_ctx.values.tolist()
for i, id in enumerate(para_top_ids):
sub_ids = [int(id)] # cumulative list of subword token ids
dec = toker.decode(sub_ids).strip()
if DEBUG_OUTPUT:
print('Trying:', dec)
#print(para_pos[id])
#if para_pos_best[id] > 0:
# continue
if dec.isupper() != answer.isupper():
continue
if EXTEND_SUBWORDS and para_pos_best[id] > 0:
if DEBUG_OUTPUT:
print("Extending %s with %d masks..."%(dec, para_pos_best[id]))
ext_ids, _ = extend(toks_sent, toks_para, [id], para_pos_best[id], para_words)
sub_ids = ext_ids + sub_ids
dec_ext = toker.decode(sub_ids).strip()
if DEBUG_OUTPUT:
print("Extended %s to %s"%(dec, dec_ext))
if is_word(dec_ext) or (dec_ext != '' and dec_ext in para_words):
dec = dec_ext # choose new word
else:
sub_ids = [int(id)] # reset
if len(toker.decode(sub_ids).lower().strip()) < 2:
continue
if dec[0].isupper() != answer[0].isupper():
continue
# Only add distractor if it does not contain punctuation
#if any(p in dec for p in punctuation):
# pass
#continue
if dec.lower() in profanity:
continue
# make sure is a word, either in dict or somewhere else in text
if not is_word(dec) and dec.lower() not in para_words:
continue
# make sure is not the same as an adjacent word
if dec.lower() == prev_word or dec.lower() == next_word:
continue
# Don't add the distractor if stem matches another
stem = stemmer.stem(dec).lower()
if stem in stems or stem == ans_stem:
continue
# Only add distractor if it does not contain a number
if any(char.isdigit() for char in toker.decode([id])):
continue
# Only add distractor if the distractor exists in the text already
if DISTRACTORS_FROM_TEXT and dec.lower() not in para_words:
continue
#if answer[0].isupper():
# dec = dec.capitalize()
# PASSED ALL TESTS; finally add distractor and computations
distractors.append(dec)
stems.append(stem)
sent_logprob = 0
para_logprob = 0
nsubs = len(sub_ids)
for j in range(nsubs):
sub_id = sub_ids[j]
sent_logprob_j = log(sent_sms_all[nsubs-1][j][sub_id])
para_logprob_j = log(para_sms_all[nsubs-1][j][sub_id])
#if j == 0 or sent_logprob_j > sent_logprob:
# sent_logprob = sent_logprob_j
#if j == 0 or para_logprob_j > para_logprob:
# para_logprob = para_logprob_j
sent_logprob += sent_logprob_j
para_logprob += para_logprob_j
sent_logprob /= nsubs
para_logprob /= nsubs
if DEBUG_OUTPUT:
print("%s (p_sent=%f, p_para=%f)"%(dec,sent_logprob,para_logprob))
sent_probs.append(exp(sent_logprob))
para_probs.append(exp(para_logprob))
# sent_probs.append(sent_sms_all[nsubs-1][nsubs-1][sub_id])
# para_probs.append(para_sms_all[nsubs-1][nsubs-1][sub_id])
embs.append(get_emb(toks_para, sub_ids))
if len(distractors) >= K:
break
if DEBUG_OUTPUT:
print('Corresponding Text: ', text)
print('Correct Answer: ', answer)
print('Distractors created before annealing: ', distractors)
#indices = anneal(sent_probs, para_probs, embs, emb_ans, number_of_distractors, distractors, answer)
#distractors = [distractors[i] for i in indices]
#distractors += [''] * (number_of_distractors - len(distractors))
return sent_probs, para_probs, embs, emb_ans, distractors
def create_distractors(text, answer):
sent_probs, para_probs, embs, emb_ans, distractors = candidates(text, answer)
#print(distractors)
indices = anneal(sent_probs, para_probs, embs, emb_ans, distractors, 3, answer)
return [distractors[x] for x in indices]
st.title("nCloze")
st.subheader("Create a multiple-choice cloze test from a passage")
st.markdown("Note: this is a free, CPU-only space and will be slow. For better performance, clone the space with a GPU-enabled environment.")
def blank(tok):
if tok == 'a(n)':
strp = tok
else:
strp = tok.strip(punctuation)
print(strp, tok.replace(strp, toker.mask_token))
return strp, tok.replace(strp, toker.mask_token)
test = """In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis is a highly regulated and controlled process that confers advantages during an organism's life cycle. For example, the separation of fingers and toes in a developing human embryo occurs because cells between the digits undergo apoptosis. Unlike necrosis, apoptosis produces cell fragments called apoptotic bodies that phagocytes are able to engulf and remove before the contents of the cell can spill out onto surrounding cells and cause damage to them."""
st.header("Basic options")
SPACING = int(st.text_input('Blank spacing', value="7"))
OFFSET = int(st.text_input('First word to blank (0 to use spacing)', value="0"))
st.header("Advanced options")
ALPHA = float(st.text_input('Incorrectness weight', value="0.75"))
BETA = float(st.text_input('Distinctness weight', value="0.75"))
MODEL_TYPE = st.text_input('Masked Language Model (from HuggingFace)', value="roberta-large")
K = 16
model = AutoModelForMaskedLM.from_pretrained(MODEL_TYPE)#, cache_dir=CACHE_DIR)
if T.cuda.is_available():
model.cuda()
toker = AutoTokenizer.from_pretrained(MODEL_TYPE, add_prefix_space=True)
sorted_toker_vocab_dict = sorted(toker.vocab.items(), key=lambda x:x[1])
if toker.mask_token == '[MASK]': # BERT style
suffix_mask = T.FloatTensor([1 if (('##' == x[0][:2]) and (re.match("^[A-Za-z0-9']*$", x[0]) is not None)) else 0 for x in sorted_toker_vocab_dict]) # 1 means is-suffix and 0 mean not-suffix
else: # RoBERTa style
suffix_mask = T.FloatTensor([1 if (('Ġ' != x[0][0]) and (re.match("^[A-Za-z0-9']*$", x[0]) is not None)) else 0 for x in sorted_toker_vocab_dict]) # 1 means is-suffix and 0 mean not-suffix
suffix_mask_inv = suffix_mask * -1 + 1
word_mask = suffix_mask_inv*T.FloatTensor([1 if is_word(x[0][1:]) and x[0][1:].lower() not in profanity else 0 for x in sorted_toker_vocab_dict])
if T.cuda.is_available():
suffix_mask=suffix_mask.cuda()
suffix_mask_inv=suffix_mask_inv.cuda()
word_mask = word_mask.cuda()
st.subheader("Passage")
st.text_area('Passage to create a cloze test from:',value=test,key="text", max_chars=1024, height=275)
def generate():
ws = st.session_state.text.split()
wb = st.session_state.text.split()
qs = []
i = OFFSET - 1 if OFFSET > 0 else SPACING
j = 0
while i < len(ws):
a, b = blank(ws[i])
while b == '' and i < len(ws)-1:
i += 1
a, b = blank(ws[i])
if b != '':
w = ws[i]
ws[i] = b
wb[i] = b
while j<i:
yield(' ' + ws[j])
j += 1
masked = ' '.join(ws)
#st.write(masked)
ds = create_distractors(masked, a)
print(ds, a)
q = ds+[a+'\*']
random.shuffle(q)
yield(b.replace(toker.mask_token,' **['+', '.join(q)+']**'))
j+=1
qs.append(ds)
ws[i] = w
i += SPACING
while j<len(ws):
yield(' ' + ws[j])
j += 1
# Load model and run inference
if st.button("Generate"):
st.write_stream(generate())