Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The Google Research Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Main file for running the model trainer.""" | |
from absl import app | |
from absl import flags | |
from absl import logging | |
from clu import platform | |
import jax | |
from ml_collections import config_flags | |
import tensorflow as tf | |
from invariant_slot_attention.lib import trainer | |
FLAGS = flags.FLAGS | |
config_flags.DEFINE_config_file( | |
"config", None, "Config file.") | |
flags.DEFINE_string("workdir", None, "Work unit directory.") | |
flags.DEFINE_string("jax_backend_target", None, "JAX backend target to use.") | |
flags.mark_flags_as_required(["config", "workdir"]) | |
def main(argv): | |
del argv | |
# Hide any GPUs from TensorFlow. Otherwise TF might reserve memory and make | |
# it unavailable to JAX. | |
tf.config.experimental.set_visible_devices([], "GPU") | |
if FLAGS.jax_backend_target: | |
logging.info("Using JAX backend target %s", FLAGS.jax_backend_target) | |
jax.config.update("jax_xla_backend", "tpu_driver") | |
jax.config.update("jax_backend_target", FLAGS.jax_backend_target) | |
logging.info("JAX host: %d / %d", jax.host_id(), jax.host_count()) | |
logging.info("JAX devices: %r", jax.devices()) | |
# Add a note so that we can tell which task is which JAX host. | |
platform.work_unit().set_task_status( | |
f"host_id: {jax.host_id()}, host_count: {jax.host_count()}") | |
platform.work_unit().create_artifact(platform.ArtifactType.DIRECTORY, | |
FLAGS.workdir, "workdir") | |
trainer.train_and_evaluate(FLAGS.config, FLAGS.workdir) | |
if __name__ == "__main__": | |
app.run(main) | |