ongkn's picture
round the score to two instead of three dec places
b792534 unverified
import gradio as gr
from transformers import pipeline, ViTForImageClassification, ViTImageProcessor
import numpy as np
from PIL import Image
import warnings
import logging
from pytorch_grad_cam import run_dff_on_image, GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import torch
from face_grab import FaceGrabber
from gradcam import GradCam
from torchvision import transforms
logging.basicConfig(level=logging.INFO)
model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
processor = ViTImageProcessor.from_pretrained("ongkn/attraction-classifier")
faceGrabber = FaceGrabber()
gradCam = GradCam()
targetsForGradCam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")),
ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))]
targetLayerDff = model.vit.layernorm
targetLayerGradCam = model.vit.encoder.layer[-2].output
def classify_image(input):
face = faceGrabber.grab_faces(np.array(input))
if face is None:
return "No face detected", 0, input
face = Image.fromarray(face)
faceResized = face.resize((224, 224))
tensorResized = transforms.ToTensor()(faceResized)
dffImage = run_dff_on_image(model=model,
target_layer=targetLayerDff,
classifier=model.classifier,
img_pil=faceResized,
img_tensor=tensorResized,
reshape_transform=gradCam.reshape_transform_vit_huggingface,
n_components=6,
top_k=15
)
result = gradCam.get_top_category(model, tensorResized)
cls = result[0]["label"]
result[0]["score"] = round(result[0]["score"], 2)
clsIdx = gradCam.category_name_to_index(model, cls)
clsTarget = ClassifierOutputTarget(clsIdx)
gradCamImage = gradCam.run_grad_cam_on_image(model=model,
target_layer=targetLayerGradCam,
targets_for_gradcam=[clsTarget],
input_tensor=tensorResized,
input_image=faceResized,
reshape_transform=gradCam.reshape_transform_vit_huggingface)
if result[0]["label"] == "pos" and result[0]["score"] > 0.85 and result[0]["score"] <= 0.9:
return result[0]["label"], result[0]["score"], "Nice!", face, dffImage, gradCamImage
elif result[0]["label"] == "pos" and result[0]["score"] > 0.9 and result[0]["score"] <= 0.95:
return result[0]["label"], result[0]["score"], "Pretty!", face, dffImage, gradCamImage
elif result[0]["label"] == "pos" and result[0]["score"] > 0.95 and result[0]["score"] <= 0.98:
return result[0]["label"], result[0]["score"], "WHOA!!!!", face, dffImage, gradCamImage
elif result[0]["label"] == "pos" and result[0]["score"] > 0.98:
return result[0]["label"], result[0]["score"], "** ABSOLUTELY MINDBLOWING **", face, dffImage, gradCamImage
else:
return cls, result[0]["score"], "Indifferent", face, dffImage, gradCamImage
iface = gr.Interface(
fn=classify_image,
inputs="image",
outputs=["text", "number", "text", "image", "image", "image"],
title="Attraction Classifier - subjective",
description=f"Takes in a (224, 224, 3) (RGB) image and outputs an attraction class: {'pos', 'neg'}, along with a GradCam/DFF explanation. Face detection, cropping, and resizing are done internally. Uploaded images are not stored by us, but may be stored by HF. Refer to their [privacy policy](https://huggingface.co/privacy) for details.\nAssociated post: https://simtoon.ongakken.com/Projects/Personal/Girl+classifier/desc+-+girl+classifier"
)
iface.launch()