ongkn commited on
Commit
8bbdb4e
·
1 Parent(s): 70af871

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -1
app.py CHANGED
@@ -1,3 +1,79 @@
1
  import gradio as gr
 
 
 
 
 
 
2
 
3
- gr.Interface.load("models/ongkn/attraction-classifier").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import pipeline, ViTForImageClassification, ViTImageProcessor
3
+ import numpy as np
4
+ from PIL import Image
5
+ import cv2 as cv
6
+ import dlib
7
+ import logging
8
 
9
+ logging.basicConfig(level=logging.INFO)
10
+
11
+ def grab_faces(img: np.ndarray) -> Optional[np.ndarray]:
12
+ cascades = [
13
+ "haarcascade_frontalface_default.xml",
14
+ "haarcascade_frontalface_alt.xml",
15
+ "haarcascade_frontalface_alt2.xml",
16
+ "haarcascade_frontalface_alt_tree.xml"
17
+ ]
18
+
19
+ detector = dlib.get_frontal_face_detector() # load face detector
20
+ predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") # load face predictor
21
+ mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") # load face detector
22
+
23
+ paddingBy = 0.15 # padding by 15%
24
+
25
+ gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert to grayscale
26
+
27
+ detected = None
28
+
29
+ for cascade in cascades:
30
+ cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade)
31
+ faces = cascadeClassifier.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) # detect faces
32
+ if len(faces) > 0:
33
+ detected = faces[0]
34
+ logging.info(f"Face detected by {cascade}")
35
+ break
36
+
37
+ if detected is None:
38
+ faces = detector(gray) # detect faces
39
+ if len(faces) > 0:
40
+ detected = faces[0]
41
+ detected = (detected.left(), detected.top(), detected.width(), detected.height())
42
+ logging.info("Face detected by dlib")
43
+
44
+ if detected is None:
45
+ faces = mmod(img)
46
+ if len(faces) > 0:
47
+ detected = faces[0]
48
+ detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height())
49
+ logging.info("Face detected by mmod")
50
+
51
+ if detected is not None: # if face detected
52
+ x, y, w, h = detected # grab first face
53
+ padW = int(paddingBy * w) # get padding width
54
+ padH = int(paddingBy * h) # get padding height
55
+ imgH, imgW, _ = img.shape # get image dims
56
+ x = max(0, x - padW)
57
+ y = max(0, y - padH)
58
+ w = min(imgW - x, w + 2 * padW)
59
+ h = min(imgH - y, h + 2 * padH)
60
+ x = max(0, x - (w - detected[2]) // 2) # center the face horizontally
61
+ y = max(0, y - (h - detected[3]) // 2) # center the face vertically
62
+ face = img[y:y+h, x:x+w] # crop face
63
+ return face
64
+
65
+ return None
66
+
67
+ model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
68
+ processor = ViTImageProcessor.from_pretrained("ongkn/attraction-classifier")
69
+
70
+ pipe = pipeline("image-classification", model=model, feature_extractor=processor)
71
+
72
+ def classify_image(inp):
73
+ face = grab_faces(np.array(inp))
74
+ face = Image.fromarray(face)
75
+ result = pipe(face)
76
+ return result[0]["label"], result[0]["score"]
77
+
78
+ iface = gr.Interface(fn=classify_image, inputs="image", outputs=["text", "number"])
79
+ iface.launch()