File size: 3,115 Bytes
e56d24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
    Wav2Vec2Model,
    Wav2Vec2PreTrainedModel,
)
import os
import librosa
import numpy as np


class RegressionHead(nn.Module):
    r"""Classification head."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class EmotionModel(Wav2Vec2PreTrainedModel):
    r"""Speech emotion classifier."""

    def __init__(self, config):
        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = RegressionHead(config)
        self.init_weights()

    def forward(
            self,
            input_values,
    ):
        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)

        return hidden_states, logits


# load model from hub
device = 'cuda' if torch.cuda.is_available() else "cpu"
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)


def process_func(
        x: np.ndarray,
        sampling_rate: int,
        embeddings: bool = False,
) -> np.ndarray:
    r"""Predict emotions or extract embeddings from raw audio signal."""

    # run through processor to normalize signal
    # always returns a batch, so we just get the first entry
    # then we put it on the device
    y = processor(x, sampling_rate=sampling_rate)
    y = y['input_values'][0]
    y = torch.from_numpy(y).to(device)

    # run through model
    with torch.no_grad():
        y = model(y)[0 if embeddings else 1]

    # convert to numpy
    y = y.detach().cpu().numpy()

    return y
#
#
# def disp(rootpath, wavname):
#     wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000)
#     display(ipd.Audio(wav, rate=sr))

rootpath = "dataset/nene"
embs = []
wavnames = []
def extract_dir(path):
    rootpath = path
    for idx, wavname in enumerate(os.listdir(rootpath)):
        wav, sr =librosa.load(f"{rootpath}/{wavname}", 16000)
        emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
        embs.append(emb)
        wavnames.append(wavname)
        np.save(f"{rootpath}/{wavname}.emo.npy", emb.squeeze(0))
        print(idx, wavname)

def extract_wav(path):
    wav, sr = librosa.load(path, 16000)
    emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
    return emb

if __name__ == '__main__':
    for spk in ["serena", "koni", "nyaru","shanoa", "mana"]:
        extract_dir(f"dataset/{spk}")