akhaliq's picture
akhaliq HF staff
Update app.py
0922d82
raw
history blame
2.74 kB
import numpy as np
import math
import matplotlib.pyplot as plt
import onnxruntime as rt
import cv2
import json
import gradio as gr
from huggingface_hub import hf_hub_download
import onnxruntime as rt
modele = hf_hub_download(repo_id="onnx/EfficientNet-Lite4", filename="efficientnet-lite4-11.onnx")
# load the labels text file
labels = json.load(open("labels_map.txt", "r"))
# set image file dimensions to 224x224 by resizing and cropping image from center
def pre_process_edgetpu(img, dims):
output_height, output_width, _ = dims
img = resize_with_aspectratio(img, output_height, output_width, inter_pol=cv2.INTER_LINEAR)
img = center_crop(img, output_height, output_width)
img = np.asarray(img, dtype='float32')
# converts jpg pixel value from [0 - 255] to float array [-1.0 - 1.0]
img -= [127.0, 127.0, 127.0]
img /= [128.0, 128.0, 128.0]
return img
# resize the image with a proportional scale
def resize_with_aspectratio(img, out_height, out_width, scale=87.5, inter_pol=cv2.INTER_LINEAR):
height, width, _ = img.shape
new_height = int(100. * out_height / scale)
new_width = int(100. * out_width / scale)
if height > width:
w = new_width
h = int(new_height * height / width)
else:
h = new_height
w = int(new_width * width / height)
img = cv2.resize(img, (w, h), interpolation=inter_pol)
return img
# crop the image around the center based on given height and width
def center_crop(img, out_height, out_width):
height, width, _ = img.shape
left = int((width - out_width) / 2)
right = int((width + out_width) / 2)
top = int((height - out_height) / 2)
bottom = int((height + out_height) / 2)
img = img[top:bottom, left:right]
return img
sess = rt.InferenceSession(modele)
def inference(img):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = pre_process_edgetpu(img, (128, 128, 3))
img_batch = np.expand_dims(img, axis=0)
results = sess.run(["Softmax:0"], {"images:0": img_batch})[0]
result = reversed(results[0].argsort()[-5:])
resultdic = {}
for r in result:
resultdic[labels[str(r)]] = float(results[0][r])
return resultdic
title="EfficientNet-Lite4"
description="EfficientNet-Lite 4 is the largest variant and most accurate of the set of EfficientNet-Lite model. It is an integer-only quantized model that produces the highest accuracy of all of the EfficientNet models. It achieves 80.4% ImageNet top-1 accuracy, while still running in real-time (e.g. 30ms/image) on a Pixel 4 CPU."
examples=[['catonnx.jpg']]
gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,examples=examples).launch(enable_queue=True)