Spaces:
Build error
Build error
Update app.py
Browse filesfine tuned halini gpu'ya kurdum.quantized çalışmadı ama cpu'da çalıştığından çökmüş de olabilir bakılacak.
app.py
CHANGED
@@ -1,6 +1,19 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -8,55 +21,53 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
8 |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
|
11 |
-
|
12 |
-
inference_params = {
|
13 |
-
"n_threads": 4,
|
14 |
-
"n_predict": -1,
|
15 |
-
"top_k": 40,
|
16 |
-
"min_p": 0.05,
|
17 |
-
"top_p": 0.95,
|
18 |
-
"temp": 0.8,
|
19 |
-
"repeat_penalty": 1.1,
|
20 |
-
"input_prefix": "<|start_header_id|>user<|end_header_id|>\\n\\n",
|
21 |
-
"input_suffix": "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n",
|
22 |
-
"antiprompt": [],
|
23 |
-
"pre_prompt": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak.",
|
24 |
-
"pre_prompt_suffix": "<|eot_id|>",
|
25 |
-
"pre_prompt_prefix": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\n",
|
26 |
-
"seed": -1,
|
27 |
-
"tfs_z": 1,
|
28 |
-
"typical_p": 1,
|
29 |
-
"repeat_last_n": 64,
|
30 |
-
"frequency_penalty": 0,
|
31 |
-
"presence_penalty": 0,
|
32 |
-
"n_keep": 0,
|
33 |
-
"logit_bias": {},
|
34 |
-
"mirostat": 0,
|
35 |
-
"mirostat_tau": 5,
|
36 |
-
"mirostat_eta": 0.1,
|
37 |
-
"memory_f16": True,
|
38 |
-
"multiline_input": False,
|
39 |
-
"penalize_nl": True
|
40 |
-
}
|
41 |
-
|
42 |
-
|
43 |
-
llama = Llama.from_pretrained(
|
44 |
-
repo_id="ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1-GGUF",
|
45 |
-
filename="*Q4_K.gguf",
|
46 |
-
verbose=False
|
47 |
-
)
|
48 |
-
|
49 |
def respond(
|
50 |
message,
|
51 |
history: list[tuple[str, str]],
|
52 |
system_message,
|
|
|
|
|
|
|
53 |
):
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
"""
|
62 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
@@ -64,16 +75,16 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
64 |
demo = gr.ChatInterface(
|
65 |
respond,
|
66 |
additional_inputs=[
|
67 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message")
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
],
|
78 |
)
|
79 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
#from llama_cpp import Llama
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
import torch
|
7 |
+
|
8 |
+
model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_id,
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
device_map="auto",
|
15 |
+
)
|
16 |
+
|
17 |
|
18 |
"""
|
19 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
21 |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
22 |
|
23 |
|
24 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def respond(
|
26 |
message,
|
27 |
history: list[tuple[str, str]],
|
28 |
system_message,
|
29 |
+
max_tokens,
|
30 |
+
temperature,
|
31 |
+
top_p,
|
32 |
):
|
33 |
+
|
34 |
+
print("response girildi")
|
35 |
+
|
36 |
+
messages = [
|
37 |
+
{"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
|
38 |
+
{"role": "user", "content": message},
|
39 |
+
]
|
40 |
+
|
41 |
|
42 |
+
input_ids = tokenizer.apply_chat_template(
|
43 |
+
messages,
|
44 |
+
add_generation_prompt=True,
|
45 |
+
return_tensors="pt"
|
46 |
+
).to(model.device)
|
47 |
+
|
48 |
+
terminators = [
|
49 |
+
tokenizer.eos_token_id,
|
50 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
51 |
+
]
|
52 |
+
|
53 |
+
print("cevaba girildi")
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
outputs = model.generate(
|
58 |
+
input_ids,
|
59 |
+
max_new_tokens=256,
|
60 |
+
eos_token_id=terminators,
|
61 |
+
do_sample=True,
|
62 |
+
temperature=0.6,
|
63 |
+
top_p=0.9,
|
64 |
+
)
|
65 |
+
response = outputs[0][input_ids.shape[-1]:]
|
66 |
+
print("cevap döndü")
|
67 |
+
|
68 |
+
|
69 |
+
yield tokenizer.decode(response, skip_special_tokens=True)
|
70 |
+
|
71 |
|
72 |
"""
|
73 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
75 |
demo = gr.ChatInterface(
|
76 |
respond,
|
77 |
additional_inputs=[
|
78 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
79 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
80 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
81 |
+
gr.Slider(
|
82 |
+
minimum=0.1,
|
83 |
+
maximum=1.0,
|
84 |
+
value=0.95,
|
85 |
+
step=0.05,
|
86 |
+
label="Top-p (nucleus sampling)",
|
87 |
+
), # inference parametreleri eklenecek
|
88 |
],
|
89 |
)
|
90 |
|