File size: 8,304 Bytes
344bc31
 
 
 
 
 
 
990acce
1be4b11
 
344bc31
 
 
 
 
1be4b11
344bc31
1be4b11
344bc31
 
 
 
8d92093
50942e0
1be4b11
 
 
 
344bc31
 
50942e0
344bc31
 
1be4b11
344bc31
1be4b11
 
344bc31
1be4b11
 
 
 
344bc31
1be4b11
344bc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be4b11
 
 
344bc31
50942e0
1be4b11
50942e0
1be4b11
 
 
344bc31
 
1be4b11
 
50942e0
1be4b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50942e0
1be4b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d986a
50942e0
 
 
 
344bc31
50942e0
 
 
 
 
344bc31
50942e0
 
49d986a
1be4b11
 
 
 
 
 
 
50942e0
1be4b11
 
 
 
 
50942e0
1be4b11
 
 
 
 
 
 
 
 
50942e0
1be4b11
 
 
 
 
 
50942e0
1be4b11
 
344bc31
 
d31ac85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import supervision as sv
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import spaces
from helpers.utils import create_directory, delete_directory, generate_unique_name
import os

BOX_ANNOTATOR = sv.BoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
VIDEO_TARGET_DIRECTORY = "tmp"

create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
model_id = "google/paligemma2-3b-pt-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(DEVICE)
processor = PaliGemmaProcessor.from_pretrained(model_id)

@spaces.GPU
def paligemma_detection(input_image, input_text, max_new_tokens):
    model_inputs = processor(text=input_text, 
                             images=input_image, 
                             return_tensors="pt"
                             ).to(torch.bfloat16).to(model.device)
    input_len = model_inputs["input_ids"].shape[-1]
    with torch.inference_mode():
        generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False)
        generation = generation[0][input_len:]
        result = processor.decode(generation, skip_special_tokens=True)
    return result

def annotate_image(result, resolution_wh, class_names, cv_image):
    
    detections = sv.Detections.from_lmm(
    sv.LMM.PALIGEMMA,
    result,
    resolution_wh=resolution_wh,
    classes=class_names.split(',')
    )
    
    annotated_image = BOX_ANNOTATOR.annotate(
        scene=cv_image.copy(),
        detections=detections
    )
    annotated_image = LABEL_ANNOTATOR.annotate(
        scene=annotated_image,
        detections=detections
    )
    annotated_image = MASK_ANNOTATOR.annotate(
        scene=annotated_image,
        detections=detections
    )

    annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
    annotated_image = Image.fromarray(annotated_image)
    
    return annotated_image
    

def process_image(input_image, input_text, class_names, max_new_tokens):
    cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    result = paligemma_detection(input_image, input_text, max_new_tokens)
    annotated_image = annotate_image(result, 
                                     (input_image.width, input_image.height), 
                                     class_names, cv_image)
    return annotated_image, result


@spaces.GPU
def process_video(input_video, input_text, class_names, max_new_tokens, progress=gr.Progress(track_tqdm=True)):
    if not input_video:
        gr.Info("Please upload a video.")
        return None

    if not input_text:
        gr.Info("Please enter a text prompt.")
        return None

    name = generate_unique_name()
    frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
    create_directory(frame_directory_path)

    video_info = sv.VideoInfo.from_video_path(input_video)
    frame_generator = sv.get_video_frames_generator(input_video)
    video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
    results = []
    with sv.VideoSink(video_path, video_info=video_info) as sink:
        for frame in progress.tqdm(frame_generator, desc="Processing video"):
            pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            
            model_inputs = processor(
                text=input_text, 
                images=pil_frame, 
                return_tensors="pt"
            ).to(torch.bfloat16).to(model.device)
            input_len = model_inputs["input_ids"].shape[-1]

            with torch.inference_mode():
                generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False)
                generation = generation[0][input_len:]
                result = processor.decode(generation, skip_special_tokens=True)

    
            detections = sv.Detections.from_lmm(
                sv.LMM.PALIGEMMA,
                result,
                resolution_wh=(video_info.width, video_info.height),
                classes=class_names.split(',')
            )

            annotated_frame = BOX_ANNOTATOR.annotate(
                scene=frame.copy(),
                detections=detections
            )
            annotated_frame = LABEL_ANNOTATOR.annotate(
                scene=annotated_frame,
                detections=detections
            )
            annotated_frame = MASK_ANNOTATOR.annotate(
                scene=annotated_frame,
                detections=detections
            )

            
            results.append(result)

            sink.write_frame(annotated_frame)

    delete_directory(frame_directory_path)
    return video_path, results

with gr.Blocks() as app:
    gr.Markdown("""
## PaliGemma 2 Detection with Supervision - Demo

[![Github](https://img.shields.io/badge/Github-100000?style=flat&logo=github&logoColor=white)](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md) [![Huggingface](https://img.shields.io/badge/Huggingface-FFD21E?style=flat&logo=Huggingface&logoColor=black)](https://huggingface.co/blog/paligemma) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/merveenoyan/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb) [![Paper](https://img.shields.io/badge/Arvix-B31B1B?style=flat&logo=arXiv&logoColor=white)](https://arxiv.org/abs/2412.03555) [![Supervision](https://img.shields.io/badge/Supervision-6706CE?style=flat&logo=Roboflow&logoColor=white)](https://supervision.roboflow.com/)

PaliGemma 2 is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and 
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343) 
vision model and the [Gemma 2](https://arxiv.org/abs/2408.00118) language model. PaliGemma 2 is designed as a versatile 
model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question 
answering, text reading, object detection and object segmentation.

This space show how to use PaliGemma 2 for object detection with supervision.
You can input an image and a text prompt
    """)
    
    with gr.Tab("Image Detection"):
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil", label="Input Image")
                input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter prompt for example 'detect person;dog")
                class_names = gr.Textbox(lines=1, placeholder="Enter class names separated by commas...", label="Class Names")
                max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=10, label="Max New Tokens", info="Set to larger for longer generation.")
            with gr.Column():
                annotated_image = gr.Image(type="pil", label="Annotated Image")
                detection_result = gr.Textbox(label="Detection Result")
        gr.Button("Submit").click(
            fn=process_image,
            inputs=[input_image, input_text, class_names, max_new_tokens],
            outputs=[annotated_image, detection_result]
        )
    
    with gr.Tab("Video Detection"):
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Input Video")
                input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter prompt for example 'detect person;dog")
                class_names = gr.Textbox(lines=1, placeholder="Enter class names separated by commas...", label="Class Names")
                max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=1, label="Max New Tokens", info="Set to larger for longer generation.")
            with gr.Column():
                output_video = gr.Video(label="Annotated Video")
                detection_result = gr.Textbox(label="Detection Result")
            
        gr.Button("Process Video").click(
            fn=process_video,
            inputs=[input_video, input_text, class_names, max_new_tokens],
            outputs=[output_video, detection_result]
        )

if __name__ == "__main__":
    app.launch(ssr_mode=False)