onuralpszr's picture
feat: ✨ For segmentation methods are added
5645efe verified
raw
history blame
11.8 kB
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import supervision as sv
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import spaces
from helpers.file_utils import create_directory, delete_directory, generate_unique_name
from helpers.segment_utils import parse_segmentation, extract_objs
import os
BOX_ANNOTATOR = sv.BoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
VIDEO_TARGET_DIRECTORY = "tmp"
VAE_MODEL = "vae-oid.npz"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
INTRO_TEXT = """
## PaliGemma 2 Detection/Segmentation with Supervision - Demo
<div style="display: flex; gap: 10px;">
<a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md">
<img src="https://img.shields.io/badge/Github-100000?style=flat&logo=github&logoColor=white" alt="Github">
</a>
<a href="https://huggingface.co/blog/paligemma">
<img src="https://img.shields.io/badge/Huggingface-FFD21E?style=flat&logo=Huggingface&logoColor=black" alt="Huggingface">
</a>
<a href="https://github.com/merveenoyan/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab">
</a>
<a href="https://arxiv.org/abs/2412.03555">
<img src="https://img.shields.io/badge/Arvix-B31B1B?style=flat&logo=arXiv&logoColor=white" alt="Paper">
</a>
<a href="https://supervision.roboflow.com/">
<img src="https://img.shields.io/badge/Supervision-6706CE?style=flat&logo=Roboflow&logoColor=white" alt="Supervision">
</a>
</div>
PaliGemma 2 is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
vision model and the [Gemma 2](https://arxiv.org/abs/2408.00118) language model. PaliGemma 2 is designed as a versatile
model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question
answering, text reading, object detection and object segmentation.
This space show how to use PaliGemma 2 for object detection with supervision.
You can input an image and a text prompt
"""
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
model_id = "google/paligemma2-3b-pt-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(DEVICE)
processor = PaliGemmaProcessor.from_pretrained(model_id)
def parse_class_names(prompt):
if not prompt.lower().startswith('detect '):
return []
classes_text = prompt[7:].strip()
return [cls.strip() for cls in classes_text.split(';') if cls.strip()]
def parse_prompt_type(prompt):
"""Determine if the prompt is for detection or segmentation."""
if prompt.lower().startswith('detect '):
return 'detection', prompt[7:].strip()
elif prompt.lower().startswith('segment '):
return 'segmentation', prompt[8:].strip()
return None, prompt
@spaces.GPU
def paligemma_detection(input_image, input_text, max_new_tokens):
model_inputs = processor(text=input_text,
images=input_image,
return_tensors="pt"
).to(torch.bfloat16).to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False)
generation = generation[0][input_len:]
result = processor.decode(generation, skip_special_tokens=True)
return result
def annotate_image(result, resolution_wh, prompt, cv_image):
class_names = parse_class_names(prompt)
if not class_names:
gr.Warning("Invalid prompt format. Please use 'detect class1;class2;class3' format")
return cv_image
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
result,
resolution_wh=resolution_wh,
classes=class_names
)
annotated_image = BOX_ANNOTATOR.annotate(
scene=cv_image.copy(),
detections=detections
)
annotated_image = LABEL_ANNOTATOR.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = MASK_ANNOTATOR.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
annotated_image = Image.fromarray(annotated_image)
return annotated_image
def process_image(input_image, input_text, max_new_tokens):
cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
prompt_type, cleaned_prompt = parse_prompt_type(input_text)
if prompt_type == 'detection':
# Existing detection logic
result = paligemma_detection(input_image, input_text, max_new_tokens)
class_names = [cls.strip() for cls in cleaned_prompt.split(';') if cls.strip()]
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
result,
resolution_wh=(input_image.width, input_image.height),
classes=class_names
)
annotated_image = BOX_ANNOTATOR.annotate(scene=cv_image.copy(), detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
annotated_image = MASK_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
elif prompt_type == 'segmentation':
# Use parse_segmentation for segmentation tasks
result = paligemma_detection(input_image, input_text, max_new_tokens)
input_image, annotations = parse_segmentation(input_image, result)
# Create annotated image
annotated_image = cv_image.copy()
for mask, label in annotations:
if isinstance(mask, np.ndarray): # If it's a segmentation mask
# Create colored mask
color_idx = hash(label) % len(COLORS)
color = tuple(int(COLORS[color_idx].lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
colored_mask = np.zeros_like(cv_image)
colored_mask[mask > 0] = color
# Blend mask with image
alpha = 0.5
annotated_image = cv2.addWeighted(annotated_image, 1, colored_mask, alpha, 0)
# Add label where mask starts
y_coords, x_coords = np.where(mask > 0)
if len(y_coords) > 0 and len(x_coords) > 0:
label_y = y_coords.min()
label_x = x_coords.min()
cv2.putText(annotated_image, label, (label_x, label_y-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
else:
gr.Warning("Invalid prompt format. Please use 'detect' or 'segment' followed by class names")
return input_image, "Invalid prompt format"
# Convert back to RGB for display
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
annotated_image = Image.fromarray(annotated_image)
return annotated_image, result
@spaces.GPU
def process_video(input_video, input_text, max_new_tokens, progress=gr.Progress(track_tqdm=True)):
if not input_video:
gr.Info("Please upload a video.")
return None
if not input_text:
gr.Info("Please enter a text prompt.")
return None
class_names = parse_class_names(input_text)
if not class_names:
gr.Warning("Invalid prompt format. Please use 'detect class1;class2;class3' format")
return None, None
name = generate_unique_name()
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
create_directory(frame_directory_path)
video_info = sv.VideoInfo.from_video_path(input_video)
frame_generator = sv.get_video_frames_generator(input_video)
video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
results = []
with sv.VideoSink(video_path, video_info=video_info) as sink:
for frame in progress.tqdm(frame_generator, desc="Processing video"):
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
model_inputs = processor(
text=input_text,
images=pil_frame,
return_tensors="pt"
).to(torch.bfloat16).to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False)
generation = generation[0][input_len:]
result = processor.decode(generation, skip_special_tokens=True)
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
result,
resolution_wh=(video_info.width, video_info.height),
classes=class_names
)
annotated_frame = BOX_ANNOTATOR.annotate(
scene=frame.copy(),
detections=detections
)
annotated_frame = LABEL_ANNOTATOR.annotate(
scene=annotated_frame,
detections=detections
)
annotated_frame = MASK_ANNOTATOR.annotate(
scene=annotated_frame,
detections=detections
)
results.append(result)
sink.write_frame(annotated_frame)
delete_directory(frame_directory_path)
return video_path, results
with gr.Blocks() as app:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Image Detection/Segmentation"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
input_text = gr.Textbox(
lines=2,
placeholder="Enter prompt in format like this: detect person;dog;building or segment person;dog;building",
label="Enter detection prompt"
)
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=10, label="Max New Tokens", info="Set to larger for longer generation.")
with gr.Column():
annotated_image = gr.Image(type="pil", label="Annotated Image")
detection_result = gr.Textbox(label="Detection Result")
gr.Button("Submit").click(
fn=process_image,
inputs=[input_image, input_text, max_new_tokens],
outputs=[annotated_image, detection_result]
)
with gr.Tab("Video Detection"):
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
input_text = gr.Textbox(
lines=2,
placeholder="Enter prompt in format like this: detect person;dog;building or segment person;dog;building",
label="Enter detection prompt"
)
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=1, label="Max New Tokens", info="Set to larger for longer generation.")
with gr.Column():
output_video = gr.Video(label="Annotated Video")
detection_result = gr.Textbox(label="Detection Result")
gr.Button("Process Video").click(
fn=process_video,
inputs=[input_video, input_text, max_new_tokens],
outputs=[output_video, detection_result]
)
if __name__ == "__main__":
app.launch(ssr_mode=False)