File size: 896 Bytes
2a5f9fb
 
 
 
23f614e
2a5f9fb
 
 
4fc3864
2a5f9fb
6b87e28
395eff6
6b87e28
 
 
 
 
 
 
 
a5d34d3
6b87e28
 
2a5f9fb
 
 
 
 
 
df66f6e
2a5f9fb
23f614e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
from huggingface_hub import HfApi

# clone / pull the lmeh eval data
HF_TOKEN = os.environ.get("HF_TOKEN", None)

REPO_ID = "HuggingFaceH4/open_llm_leaderboard"
QUEUE_REPO = "open-llm-leaderboard/requests"
AGGREGATED_REPO = "open-llm-leaderboard/contents"

HF_HOME = os.getenv("HF_HOME", ".")

# Check HF_HOME write access
print(f"Initial HF_HOME set to: {HF_HOME}")

if not os.access(HF_HOME, os.W_OK):
    print(f"No write access to HF_HOME: {HF_HOME}. Resetting to current directory.")
    HF_HOME = "."
    os.environ["HF_HOME"] = HF_HOME
else:
    print("Write access confirmed for HF_HOME")

EVAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")

PATH_TO_COLLECTION = "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03"

# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
HAS_HIGHER_RATE_LIMIT = ["TheBloke"]

API = HfApi(token=HF_TOKEN)