open_llm_leaderboard / src /tools /collections.py
Clémentine
added collections back to main
8618a2a
raw
history blame
3.3 kB
import pandas as pd
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
from huggingface_hub.utils._errors import HfHubHTTPError
from pandas import DataFrame
from src.display.utils import AutoEvalColumn, ModelType
from src.envs import HF_TOKEN, PATH_TO_COLLECTION
# Specific intervals for the collections
intervals = {
"1B": pd.Interval(0, 1.5, closed="right"),
"3B": pd.Interval(2.5, 3.5, closed="neither"),
"7B": pd.Interval(6, 8, closed="neither"),
"13B": pd.Interval(10, 14, closed="neither"),
"30B": pd.Interval(25, 35, closed="neither"),
"65B": pd.Interval(60, 70, closed="neither"),
}
def _filter_by_type_and_size(df, model_type, size_interval):
"""Filter DataFrame by model type and parameter size interval."""
type_emoji = model_type.value.symbol[0]
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: x in size_interval)
return filtered_df.loc[mask]
def _add_models_to_collection(collection, models, model_type, size):
"""Add best models to the collection and update positions."""
cur_len_collection = len(collection.items)
for ix, model in enumerate(models, start=1):
try:
collection = add_collection_item(
PATH_TO_COLLECTION,
item_id=model,
item_type="model",
exists_ok=True,
note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
token=HF_TOKEN,
)
# Ensure position is correct if item was added
if len(collection.items) > cur_len_collection:
item_object_id = collection.items[-1].item_object_id
update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
cur_len_collection = len(collection.items)
break # assuming we only add the top model
except HfHubHTTPError:
continue
def update_collections(df: DataFrame):
"""Update collections by filtering and adding the best models."""
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=HF_TOKEN)
cur_best_models = []
for model_type in ModelType:
if not model_type.value.name:
continue
for size, interval in intervals.items():
filtered_df = _filter_by_type_and_size(df, model_type, interval)
best_models = list(
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10]
)
print(model_type.value.symbol, size, best_models)
_add_models_to_collection(collection, best_models, model_type, size)
cur_best_models.extend(best_models)
# Cleanup
existing_models = {item.item_id for item in collection.items}
to_remove = existing_models - set(cur_best_models)
for item_id in to_remove:
try:
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=HF_TOKEN)
except HfHubHTTPError:
continue