Wauplin's picture
Wauplin HF staff
Update app.py
e3b01f3 verified
raw
history blame
12.8 kB
import os
import logging
import time
import gradio as gr
import datasets
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from gradio_space_ci import enable_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
FAQ_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import (
API,
EVAL_REQUESTS_PATH,
AGGREGATED_REPO,
HF_TOKEN,
QUEUE_REPO,
REPO_ID,
HF_HOME,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def init_space(full_init: bool = True):
"""Initializes the application space, loading only necessary data."""
if full_init:
# These downloads only occur on full initialization
try:
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
except Exception:
restart_space()
# Always retrieve the leaderboard DataFrame
leaderboard_dataset = datasets.load_dataset(AGGREGATED_REPO, "default", split="train", cache_dir=HF_HOME)
leaderboard_df = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
# Evaluation queue DataFrame retrieval is independent of initialization detail level
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return leaderboard_df, eval_queue_dfs
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
leaderboard_df, eval_queue_dfs = init_space(full_init=do_full_init)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
# Data processing for plots now only on demand in the respective Gradio tab
#def load_and_create_plots():
# plot_df = create_plot_df(create_scores_df(leaderboard_df))
# return plot_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = Leaderboard(
value=leaderboard_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True
),
ColumnFilter(
AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True
),
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
],
bool_checkboxgroup_label="Hide models",
)
#with gr.TabItem("πŸ“ˆ Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
# with gr.Row():
# with gr.Column():
# plot_df = load_and_create_plots()
# chart = create_metric_plot_obj(
# plot_df,
# [AutoEvalColumn.average.name],
# title="Average of Top Scores and Human Baseline Over Time (from last update)",
# )
# gr.Plot(value=chart, min_width=500)
# with gr.Column():
# plot_df = load_and_create_plots()
# chart = create_metric_plot_obj(
# plot_df,
# BENCHMARK_COLS,
# title="Top Scores and Human Baseline Over Time (from last update)",
# )
# gr.Plot(value=chart, min_width=500)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
demo.queue(default_concurrency_limit=40)
# Add webhooks
app = WebhooksServer(ui=demo)
@app.add_webhook
async def update_leaderboard(payload: WebhookPayload) -> None:
if payload.repo.type == "dataset" and payload.event.action == "update":
leaderboard_dataset = datasets.load_dataset(AGGREGATED_REPO, "default", split="train", cache_dir=HF_HOME)
leaderboard_df = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
leaderboard.value = leaderboard_df
@app.add_webhook
async def update_queue(payload: WebhookPayload) -> None:
if payload.repo.type == "dataset" and payload.event.action == "update":
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
finished_eval_table.value = finished_eval_queue_df
running_eval_table.value = running_eval_queue_df
pending_eval_table.value = pending_eval_queue_df
app.launch(share=True)