import pandas as pd from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item from huggingface_hub.utils._errors import HfHubHTTPError from pandas import DataFrame from src.display.utils import AutoEvalColumn, ModelType from src.envs import HF_TOKEN, PATH_TO_COLLECTION # Specific intervals for the collections intervals = { "1B": pd.Interval(0, 1.5, closed="right"), "3B": pd.Interval(2.5, 3.5, closed="neither"), "7B": pd.Interval(6, 8, closed="neither"), "13B": pd.Interval(10, 14, closed="neither"), "30B": pd.Interval(25, 35, closed="neither"), "65B": pd.Interval(60, 70, closed="neither"), } def _filter_by_type_and_size(df, model_type, size_interval): """Filter DataFrame by model type and parameter size interval.""" type_emoji = model_type.value.symbol[0] filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji] params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") mask = params_column.apply(lambda x: x in size_interval) return filtered_df.loc[mask] def _add_models_to_collection(collection, models, model_type, size): """Add best models to the collection and update positions.""" cur_len_collection = len(collection.items) for ix, model in enumerate(models, start=1): try: collection = add_collection_item( PATH_TO_COLLECTION, item_id=model, item_type="model", exists_ok=True, note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!", token=HF_TOKEN, ) # Ensure position is correct if item was added if len(collection.items) > cur_len_collection: item_object_id = collection.items[-1].item_object_id update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix) cur_len_collection = len(collection.items) break # assuming we only add the top model except HfHubHTTPError: continue def update_collections(df: DataFrame): """Update collections by filtering and adding the best models.""" collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=HF_TOKEN) cur_best_models = [] for model_type in ModelType: if not model_type.value.name: continue for size, interval in intervals.items(): filtered_df = _filter_by_type_and_size(df, model_type, interval) best_models = list( filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10] ) print(model_type.value.symbol, size, best_models) _add_models_to_collection(collection, best_models, model_type, size) cur_best_models.extend(best_models) # Cleanup existing_models = {item.item_id for item in collection.items} to_remove = existing_models - set(cur_best_models) for item_id in to_remove: try: delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=HF_TOKEN) except HfHubHTTPError: continue