import os import logging import time import datetime import gradio as gr import datasets from huggingface_hub import snapshot_download from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns from src.display.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, FAQ_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, AutoEvalColumn, fields, ) from src.envs import ( EVAL_REQUESTS_PATH, AGGREGATED_REPO, QUEUE_REPO, REPO_ID, HF_HOME, ) from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set. # This controls whether a full initialization should be performed. DO_FULL_INIT = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True" LAST_UPDATE_LEADERBOARD = datetime.datetime.now() def time_diff_wrapper(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() diff = end_time - start_time logging.info(f"Time taken for {func.__name__}: {diff} seconds") return result return wrapper @time_diff_wrapper def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5): """Download dataset with exponential backoff retries.""" attempt = 0 while attempt < max_attempts: try: logging.info(f"Downloading {repo_id} to {local_dir}") snapshot_download( repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=None, etag_timeout=30, max_workers=8, ) logging.info("Download successful") return except Exception as e: wait_time = backoff_factor**attempt logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s") time.sleep(wait_time) attempt += 1 raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts") def get_latest_data_leaderboard(leaderboard_initial_df = None): current_time = datetime.datetime.now() global LAST_UPDATE_LEADERBOARD if current_time - LAST_UPDATE_LEADERBOARD < datetime.timedelta(minutes=10) and leaderboard_initial_df is not None: return leaderboard_initial_df LAST_UPDATE_LEADERBOARD = current_time leaderboard_dataset = datasets.load_dataset( AGGREGATED_REPO, "default", split="train", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ) leaderboard_df = get_leaderboard_df( leaderboard_dataset=leaderboard_dataset, cols=COLS, benchmark_cols=BENCHMARK_COLS, ) return leaderboard_df def get_latest_data_queue(): eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) return eval_queue_dfs def init_space(): """Initializes the application space, loading only necessary data.""" if DO_FULL_INIT: # These downloads only occur on full initialization download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH) # Always redownload the leaderboard DataFrame leaderboard_df = get_latest_data_leaderboard() # Evaluation queue DataFrame retrieval is independent of initialization detail level eval_queue_dfs = get_latest_data_queue() return leaderboard_df, eval_queue_dfs # Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable. # This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag. leaderboard_df, eval_queue_dfs = init_space() finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs # Data processing for plots now only on demand in the respective Gradio tab def load_and_create_plots(): plot_df = create_plot_df(create_scores_df(leaderboard_df)) return plot_df def init_leaderboard(dataframe): return Leaderboard( value = dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), ColumnFilter( AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)", ), ColumnFilter( AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True ), ColumnFilter( AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True ), ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False), ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True), ], bool_checkboxgroup_label="Hide models", interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): leaderboard = init_leaderboard(leaderboard_df) with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2): with gr.Row(): with gr.Column(): plot_df = load_and_create_plots() chart = create_metric_plot_obj( plot_df, [AutoEvalColumn.average.name], title="Average of Top Scores and Human Baseline Over Time (from last update)", ) gr.Plot(value=chart, min_width=500) with gr.Column(): plot_df = load_and_create_plots() chart = create_metric_plot_obj( plot_df, BENCHMARK_COLS, title="Top Scores and Human Baseline Over Time (from last update)", ) gr.Plot(value=chart, min_width=500) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4): gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) demo.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard]) demo.queue(default_concurrency_limit=40).launch()