comparator / src /results.py
albertvillanova's picture
Highlight min/max Results accuracy
26e855f verified
raw
history blame
3.57 kB
import json
import gradio as gr
import numpy as np
import pandas as pd
from huggingface_hub import HfFileSystem
from src.constants import RESULTS_DATASET_ID, TASKS
def fetch_result_paths():
fs = HfFileSystem()
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
return paths
def sort_result_paths_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(RESULTS_DATASET_ID) + 1:].rsplit("/", 1)
d[model_id].append(path)
return {model_id: sorted(paths) for model_id, paths in d.items()}
def update_load_results_component():
return (gr.Button("Load", interactive=True), ) * 2
def load_results_dataframe(model_id, result_paths_per_model=None):
if not model_id or not result_paths_per_model:
return
result_paths = result_paths_per_model[model_id]
fs = HfFileSystem()
data = {"results": {}, "configs": {}}
for path in result_paths:
with fs.open(path, "r") as f:
d = json.load(f)
data["results"].update(d["results"])
data["configs"].update(d["configs"])
model_name = d.get("model_name", "Model")
df = pd.json_normalize([{key: value for key, value in data.items()}])
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
return df.set_index(pd.Index([model_name])).reset_index()
def load_results_dataframes(*model_ids, result_paths_per_model=None):
return [load_results_dataframe(model_id, result_paths_per_model=result_paths_per_model) for model_id in model_ids]
def display_results(task, *dfs):
dfs = [df.set_index("index") for df in dfs if "index" in df.columns]
if not dfs:
return None, None
df = pd.concat(dfs)
df = df.T.rename_axis(columns=None)
return display_tab("results", df, task), display_tab("configs", df, task)
def display_tab(tab, df, task):
df = df.style.format(na_rep="")
df.hide(
[
row
for row in df.index
if (
not row.startswith(f"{tab}.")
or row.startswith(f"{tab}.leaderboard.")
or row.endswith(".alias")
or (not row.startswith(f"{tab}.{task}") if task != "All" else False)
)
],
axis="index",
)
df.apply(highlight_min_max, axis=1)
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ")
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index")
return df.to_html()
def update_tasks_component():
return (
gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
visible=True,
),
) * 2
def clear_results():
# model_id_1, model_id_2, dataframe_1, dataframe_2, load_results_btn, load_configs_btn, results_task, configs_task
return (
None, None, None, None,
*(gr.Button("Load", interactive=False), ) * 2,
*(
gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
visible=False,
),
) * 2,
)
def highlight_min_max(s):
if s.name.endswith("acc,none") or s.name.endswith("acc_norm,none"):
return np.where(s == np.nanmax(s.values), "background-color:darkgreen", "background-color:darkred")
else:
return [""] * len(s)