import json import gradio as gr import pandas as pd from huggingface_hub import HfFileSystem from constants import DETAILS_DATASET_ID, DETAILS_FILENAME, RESULTS_DATASET_ID, SUBTASKS, TASKS fs = HfFileSystem() def fetch_result_paths(): paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") return paths def filter_latest_result_path_per_model(paths): from collections import defaultdict d = defaultdict(list) for path in paths: model_id, _ = path[len(RESULTS_DATASET_ID) + 1:].rsplit("/", 1) d[model_id].append(path) return {model_id: max(paths) for model_id, paths in d.items()} def get_result_path_from_model(model_id, result_path_per_model): return result_path_per_model[model_id] def update_load_results_component(): return gr.Button("Load Results", interactive=True) def load_data(result_path) -> pd.DataFrame: with fs.open(result_path, "r") as f: data = json.load(f) return data def load_results_dataframe(model_id): if not model_id: return result_path = get_result_path_from_model(model_id, latest_result_path_per_model) data = load_data(result_path) model_name = data.get("model_name", "Model") df = pd.json_normalize([{key: value for key, value in data.items()}]) # df.columns = df.columns.str.split(".") # .split return a list instead of a tuple return df.set_index(pd.Index([model_name])).reset_index() def load_results_dataframes(*model_ids): return [load_results_dataframe(model_id) for model_id in model_ids] def display_results(task, *dfs): dfs = [df.set_index("index") for df in dfs if "index" in df.columns] if not dfs: return None, None df = pd.concat(dfs) df = df.T.rename_axis(columns=None) return display_tab("results", df, task), display_tab("configs", df, task) def display_tab(tab, df, task): df = df.style.format(na_rep="") df.hide( [ row for row in df.index if ( not row.startswith(f"{tab}.") or row.startswith(f"{tab}.leaderboard.") or row.endswith(".alias") or (not row.startswith(f"{tab}.{task}") if task != "All" else False) ) ], axis="index", ) start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ") df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index") return df.to_html() def update_tasks_component(): return gr.Radio( ["All"] + list(TASKS.values()), label="Tasks", info="Evaluation tasks to be displayed", value="All", interactive=True, ) def clear_results(): # model_id_1, model_id_2, dataframe_1, dataframe_2, task return ( None, None, None, None, gr.Radio( ["All"] + list(TASKS.values()), label="Tasks", info="Evaluation tasks to be displayed", value="All", interactive=False, ), ) def update_subtasks_component(task): return gr.Radio( SUBTASKS.get(task), info="Evaluation subtasks to be displayed", value=None, ) def update_load_details_component(model_id_1, model_id_2, subtask): if (model_id_1 or model_id_2) and subtask: return gr.Button("Load Details", interactive=True) else: return gr.Button("Load Details", interactive=False) def load_details_dataframe(model_id, subtask): if not model_id or not subtask: return model_name_sanitized = model_id.replace("/", "__") paths = fs.glob( f"{DETAILS_DATASET_ID}/**/{DETAILS_FILENAME}".format( model_name_sanitized=model_name_sanitized, subtask=subtask ) ) if not paths: return path = max(paths) with fs.open(path, "r") as f: data = [json.loads(line) for line in f] df = pd.json_normalize(data) # df = df.rename_axis("Parameters", axis="columns") df["model_name"] = model_id # Keep model_name return df # return df.set_index(pd.Index([model_id])).reset_index() def load_details_dataframes(subtask, *model_ids): return [load_details_dataframe(model_id, subtask) for model_id in model_ids] def display_details(sample_idx, *dfs): rows = [df.iloc[sample_idx] for df in dfs if "model_name" in df.columns and sample_idx < len(df)] if not rows: return # Pop model_name and add it to the column name df = pd.concat([row.rename(row.pop("model_name")) for row in rows], axis="columns") return ( df.style .format(na_rep="") # .hide(axis="index") .to_html() ) def update_sample_idx_component(*dfs): maximum = max([len(df) - 1 for df in dfs]) return gr.Number( label="Sample Index", info="Index of the sample to be displayed", value=0, minimum=0, maximum=maximum, visible=True, ) def clear_details(): # model_id_1, model_id_2, details_dataframe_1, details_dataframe_2, details_task, subtask, sample_idx return ( None, None, None, None, None, None, gr.Number(label="Sample Index", info="Index of the sample to be displayed", value=0, minimum=0,visible=False), ) # if __name__ == "__main__": latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) with gr.Blocks(fill_height=True) as demo: gr.HTML("

Compare Results of the 🤗 Open LLM Leaderboard

") gr.HTML("

Select 2 models to load and compare their results

") with gr.Row(): with gr.Column(): model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Models") dataframe_1 = gr.Dataframe(visible=False) with gr.Column(): model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Models") dataframe_2 = gr.Dataframe(visible=False) with gr.Row(): # with gr.Tab("All"): # pass with gr.Tab("Results"): task = gr.Radio( ["All"] + list(TASKS.values()), label="Tasks", info="Evaluation tasks to be displayed", value="All", interactive=False, ) load_results_btn = gr.Button("Load Results", interactive=False) clear_results_btn = gr.Button("Clear Results") with gr.Tab("Results"): results = gr.HTML() with gr.Tab("Configs"): configs = gr.HTML() with gr.Tab("Details"): details_task = gr.Radio( ["All"] + list(TASKS.values()), label="Tasks", info="Evaluation tasks to be displayed", value="All", interactive=True, ) subtask = gr.Radio( SUBTASKS.get(details_task.value), label="Subtasks", info="Evaluation subtasks to be displayed (choose one of the Tasks above)", ) load_details_btn = gr.Button("Load Details", interactive=False) clear_details_btn = gr.Button("Clear Details") sample_idx = gr.Number( label="Sample Index", info="Index of the sample to be displayed", value=0, minimum=0, visible=False ) details = gr.HTML() details_dataframe_1 = gr.Dataframe(visible=False) details_dataframe_2 = gr.Dataframe(visible=False) details_dataframe = gr.DataFrame(visible=False) model_id_1.change( fn=update_load_results_component, outputs=load_results_btn, ) load_results_btn.click( fn=load_results_dataframes, inputs=[model_id_1, model_id_2], outputs=[dataframe_1, dataframe_2], ).then( fn=update_tasks_component, outputs=task, ) gr.on( triggers=[dataframe_1.change, dataframe_2.change, task.change], fn=display_results, inputs=[task, dataframe_1, dataframe_2], outputs=[results, configs], ) clear_results_btn.click( fn=clear_results, outputs=[model_id_1, model_id_2, dataframe_1, dataframe_2, task], ) details_task.change( fn=update_subtasks_component, inputs=details_task, outputs=subtask, ) gr.on( triggers=[model_id_1.change, model_id_2.change, subtask.change, details_task.change], fn=update_load_details_component, inputs=[model_id_1, model_id_2, subtask], outputs=load_details_btn, ) load_details_btn.click( fn=load_details_dataframes, inputs=[subtask, model_id_1, model_id_2], outputs=[details_dataframe_1, details_dataframe_2], ).then( fn=update_sample_idx_component, inputs=[details_dataframe_1, details_dataframe_2], outputs=sample_idx, ) gr.on( triggers=[details_dataframe_1.change, details_dataframe_2.change, sample_idx.change], fn=display_details, inputs=[sample_idx, details_dataframe_1, details_dataframe_2], outputs=details, ) clear_details_btn.click( fn=clear_details, outputs=[model_id_1, model_id_2, details_dataframe_1, details_dataframe_2, details_task, subtask, sample_idx], ) demo.launch()