File size: 7,071 Bytes
df66f6e
 
efed7dc
2a5f9fb
 
ebdd31b
 
 
df66f6e
0a3530a
 
 
b4ba8b7
0a3530a
 
 
 
2a5f9fb
 
 
df66f6e
 
 
 
2a5f9fb
 
976f398
 
2a5f9fb
ebdd31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3530a
2a5f9fb
 
 
 
 
 
 
beb2b32
efed7dc
 
 
 
 
 
 
 
 
976f398
 
 
 
 
efed7dc
 
9d22eee
 
efed7dc
9d22eee
976f398
2a5f9fb
 
 
 
 
 
efed7dc
 
 
 
2a5f9fb
efed7dc
9d22eee
efed7dc
9d22eee
 
 
2a5f9fb
 
 
 
 
 
 
 
9b8c53c
 
 
 
 
a13949e
 
ebdd31b
 
 
 
 
 
f39cc2d
 
 
 
 
 
 
 
 
2a5f9fb
9b8c53c
2a5f9fb
 
0a3530a
f3aa422
0a3530a
2a5f9fb
 
 
9b8c53c
a4c11b8
2a5f9fb
0c7ef71
 
 
 
2a5f9fb
 
 
9b8c53c
2a5f9fb
 
 
f04f90e
2a5f9fb
 
0a3530a
2a5f9fb
 
 
 
 
cb7db7e
2a5f9fb
0c7ef71
 
2a5f9fb
 
 
 
0c7ef71
 
beb2b32
efed7dc
0c7ef71
 
2a5f9fb
efed7dc
2a5f9fb
b4ba8b7
2a5f9fb
 
 
 
 
efed7dc
aefb9ee
 
 
 
 
 
 
2a5f9fb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
import os
import gradio as gr
from datetime import datetime, timezone

from dataclasses import dataclass
from transformers import AutoConfig

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import (
    API,
    EVAL_REQUESTS_PATH,
    HF_TOKEN,
    QUEUE_REPO,
    RATE_LIMIT_PERIOD,
    RATE_LIMIT_QUOTA,
)
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
    user_submission_permission,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

@dataclass
class ModelSizeChecker:
    model: str
    precision: str
    model_size_in_b: float

    def get_precision_factor(self):
        if self.precision in ["float16", "bfloat16"]:
            return 1
        elif self.precision == "8bit":
            return 2
        elif self.precision == "4bit":
            return 4
        elif self.precision == "GPTQ":
            config = AutoConfig.from_pretrained(self.model)
            num_bits = int(config.quantization_config["bits"])
            bits_to_precision_factor = {2: 8, 3: 6, 4: 4, 8: 2}
            return bits_to_precision_factor.get(num_bits, 1)
        else:
            raise Exception(f"Unknown precision {self.precision}.")

    def can_evaluate(self):
        precision_factor = self.get_precision_factor()
        return self.model_size_in_b <= 140 * precision_factor

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
    use_chat_template: bool,
    profile: gr.OAuthProfile | None
):  
    # Login require
    if profile is None:
        return styled_error("Hub Login Required")

    # Name of the actual user who sent the request
    username = profile.username

    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)


    org_or_user = ""
    model_path = model
    if "/" in model:
        org_or_user = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # Is user submitting own model?
    # Check that username in the org. 
    # if org_or_user != profile.username:

    # Is the user rate limited?
    if org_or_user != "":
        user_can_submit, error_msg = user_submission_permission(
            org_or_user, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
        )
        if not user_can_submit:
            return styled_error(error_msg)

    # Did the model authors forbid its submission to the leaderboard?
    if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
        return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
    except Exception as e:
        return styled_error("Could not get your model information. Please fill it up properly.")

    # Check model size early
    model_size = get_model_size(model_info=model_info, precision=precision)
    
    # First check: Absolute size limit for float16 and bfloat16
    if precision in ["float16", "bfloat16"] and model_size > 100:
        return styled_error(f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. "
                            f"Your model size: {model_size:.2f}B parameters.")

    # Second check: Precision-adjusted size limit for 8bit, 4bit, and GPTQ
    if precision in ["8bit", "4bit", "GPTQ"]:
        size_checker = ModelSizeChecker(model=model, precision=precision, model_size_in_b=model_size)
        
        if not size_checker.can_evaluate():
            precision_factor = size_checker.get_precision_factor()
            max_size = 140 * precision_factor
            return styled_error(f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically "
                                f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters.")

    architecture = "?"
    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(
            model_name=base_model, revision="main", token=HF_TOKEN, test_tokenizer=True
        )
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')
    if not weight_type == "Adapter":
        model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=model_info.sha, test_tokenizer=True)
        if not model_on_hub or model_config is None:
            return styled_error(f'Model "{model}" {error}')
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

    # Were the model card and license filled?
    try:
        model_info.cardData["license"]
    except Exception:
        return styled_error("Please select a license for your model")

    modelcard_OK, error_msg, model_card = check_model_card(model)
    if not modelcard_OK:
        return styled_error(error_msg)

    # Seems good, creating the eval
    print("Adding new eval")
    eval_entry = {
        "model": model,
        "base_model": base_model,
        "revision": model_info.sha, # force to use the exact model commit 
        "precision": precision,
        "params": model_size,
        "architectures": architecture,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        "job_id": -1,
        "job_start_time": None,
        "use_chat_template": use_chat_template,
        "sender": username
    }

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{org_or_user}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    print(eval_entry)
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )