File size: 20,620 Bytes
0a3530a
87e47c2
6b87e28
9346f1c
 
4596a70
2a5f9fb
60ff46b
2a5f9fb
 
8c49cb6
 
 
0a3530a
8c49cb6
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
 
0a3530a
9d22eee
0a3530a
 
 
 
 
 
 
 
 
 
 
 
 
 
df66f6e
 
9b2e755
0a3530a
df66f6e
0a3530a
8c49cb6
6b87e28
60ff46b
8ff5577
0a3530a
2a73469
10f9b3c
2a5f9fb
d084b26
87e47c2
 
6b87e28
 
dbb8b5d
87e47c2
dbb8b5d
6b87e28
 
 
0a3530a
 
 
dbb8b5d
87e47c2
6b87e28
 
87e47c2
 
 
6b87e28
87e47c2
6b87e28
 
 
 
b7d036c
87e47c2
 
 
 
 
 
0c7ef71
b7d036c
0c7ef71
0a3530a
 
 
 
 
d084b26
b7d036c
 
 
 
 
0c7ef71
6b87e28
b7d036c
6b87e28
26286b2
6b87e28
551debe
0a3530a
 
 
 
 
 
6b87e28
 
 
 
 
 
 
 
614ee1f
1f60a20
8c49cb6
72a0f0f
 
 
 
 
 
f04f90e
72a0f0f
 
0a3530a
 
 
 
 
 
 
ef5b51c
512b095
a2790cb
 
72a0f0f
8b63c4c
 
0a3530a
 
 
 
8b63c4c
 
0a3530a
b7d036c
0a3530a
 
 
aa7c3f4
8c49cb6
9b2e755
b7d036c
0a3530a
ecef2dc
7644705
0a3530a
 
ef5b51c
0a3530a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5b51c
adb0416
8c49cb6
f04f90e
8c49cb6
 
f04f90e
2a5f9fb
f04f90e
 
8c49cb6
193f184
b762711
 
f04f90e
9b2e755
 
f04f90e
460ecf2
 
3ae1b8c
ab6f548
 
3ae1b8c
dc0413f
3ae1b8c
dc0413f
 
d2179b0
8c49cb6
d2179b0
0a3530a
9b2e755
0a3530a
 
 
9b2e755
0a3530a
9b2e755
7644705
01233b7
 
58733e4
6e8f400
10f9b3c
8cb7546
613696b
ecef2dc
8c49cb6
e3a8804
 
0a3530a
e3a8804
 
 
8c49cb6
 
df66f6e
 
 
 
 
 
 
 
 
 
8c49cb6
 
 
 
 
f04f90e
 
0a3530a
193f184
0a3530a
460ecf2
601f2e9
0a3530a
fc1e99b
 
 
 
 
 
 
 
 
9d22eee
 
fc1e99b
 
 
 
 
 
 
 
 
 
8c49cb6
6e8f400
8c49cb6
2a5f9fb
8c49cb6
b7d036c
8c49cb6
2a5f9fb
6e8f400
 
ecef2dc
 
6e8f400
460d762
6e8f400
 
2a5f9fb
6e8f400
 
 
 
 
a2790cb
8c49cb6
 
a2790cb
 
e3a8804
a2790cb
f04f90e
8c49cb6
 
 
 
8b63c4c
de891db
8b63c4c
 
 
 
 
 
 
 
 
f04f90e
8b63c4c
 
 
 
 
 
0a3530a
 
 
 
 
 
 
 
ab6f548
 
 
 
 
 
 
 
f04f90e
ab6f548
 
 
 
 
f2bc0a5
9d6aecc
b1a1395
 
6b87e28
b1a1395
 
 
 
 
0a3530a
b1a1395
6b87e28
b1a1395
 
 
 
 
0a3530a
6b87e28
9d6aecc
6e8f400
9d6aecc
 
2246286
0227006
4ccfada
8dfa543
0227006
8dfa543
6e8f400
00358b1
 
0227006
6e8f400
 
 
a163e5c
8c49cb6
b323764
9d22eee
8c49cb6
b323764
2762eff
b323764
 
0227006
6e8f400
12cea14
9d22eee
8c49cb6
12cea14
 
217b585
 
12cea14
9d22eee
8c49cb6
12cea14
 
 
6e8f400
8c49cb6
8cb7546
9d6aecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8f400
 
 
 
 
 
 
 
12cea14
6e8f400
12cea14
8c49cb6
6e8f400
 
8cb7546
 
d16cee2
 
 
 
 
67109fc
d16cee2
adb0416
 
d16cee2
10f9b3c
0a3530a
 
10f9b3c
7bb3bb8
0a3530a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import os
import time
import logging
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio_space_ci import enable_space_ci

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    FAQ_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    Precision,
    WeightType,
    fields,
)
from src.envs import (
    API,
    DYNAMIC_INFO_FILE_PATH,
    DYNAMIC_INFO_PATH,
    DYNAMIC_INFO_REPO,
    EVAL_REQUESTS_PATH,
    EVAL_RESULTS_PATH,
    H4_TOKEN,
    IS_PUBLIC,
    QUEUE_REPO,
    REPO_ID,
    RESULTS_REPO,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.scripts.update_all_request_files import update_dynamic_files
from src.submission.submit import add_new_eval
from src.tools.collections import update_collections
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df


# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)

def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
    """Download dataset with exponential backoff retries."""
    attempt = 0
    while attempt < max_attempts:
        try:
            logging.info(f"Downloading {repo_id} to {local_dir}")
            snapshot_download(
                repo_id=repo_id,
                local_dir=local_dir,
                repo_type=repo_type,
                tqdm_class=None,
                etag_timeout=30,
                max_workers=8,
            )
            logging.info("Download successful")
            return
        except Exception as e:
            wait_time = backoff_factor ** attempt
            logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
            time.sleep(wait_time)
            attempt += 1
    raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")

def init_space(full_init: bool = True):
    """Initializes the application space, loading only necessary data."""
    if full_init:
        # These downloads only occur on full initialization
        try:
            download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
            download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
            download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
        except Exception:
            restart_space()

    # Always retrieve the leaderboard DataFrame
    raw_data, original_df = get_leaderboard_df(
        results_path=EVAL_RESULTS_PATH,
        requests_path=EVAL_REQUESTS_PATH,
        dynamic_path=DYNAMIC_INFO_FILE_PATH,
        cols=COLS,
        benchmark_cols=BENCHMARK_COLS,
    )

    if full_init:
        # Collection update only happens on full initialization
        update_collections(original_df)

    leaderboard_df = original_df.copy()
    
    # Evaluation queue DataFrame retrieval is independent of initialization detail level
    eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

    return leaderboard_df, raw_data, original_df, eval_queue_dfs

# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"

# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
leaderboard_df, raw_data, original_df, eval_queue_dfs = init_space(full_init=do_full_init)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs


# Data processing for plots now only on demand in the respective Gradio tab
def load_and_create_plots():
    plot_df = create_plot_df(create_scores_df(raw_data))
    return plot_df


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    hide_models: list,
    query: str,
):
    filtered_df = filter_models(
        df=hidden_df,
        type_query=type_query,
        size_query=size_query,
        precision_query=precision_query,
        hide_models=hide_models,
    )
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def load_query(request: gr.Request):  # triggered only once at startup => read query parameter if it exists
    query = request.query_params.get("query") or ""
    return (
        query,
        query,
    )  # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed


def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.fullname.name].str.contains(query, case=False, na=False))]

def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[df[AutoEvalColumn.license.name].str.contains(query, case=False, na=False)]

def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
    dummy_col = [AutoEvalColumn.fullname.name]
    filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
    return filtered_df

def filter_queries(query: str, df: pd.DataFrame):
    tmp_result_df = []

    # Empty query return the same df
    if query == "":
        return df

    # all_queries = [q.strip() for q in query.split(";")]
    # license_queries = []
    all_queries = [q.strip() for q in query.split(";") if q.strip() != ""]
    model_queries = [q for q in all_queries if not q.startswith("licence")]
    license_queries_raw = [q for q in all_queries if q.startswith("license")]
    license_queries = [
        q.replace("license:", "").strip() for q in license_queries_raw if q.replace("license:", "").strip() != ""
    ]

    # Handling model name search
    for query in model_queries:
        tmp_df = search_model(df, query)
        if len(tmp_df) > 0:
            tmp_result_df.append(tmp_df)

    if not tmp_result_df and not license_queries:
        # Nothing is found, no license_queries -> return empty df
        return pd.DataFrame(columns=df.columns)

    if tmp_result_df:
        df = pd.concat(tmp_result_df)
        df = df.drop_duplicates(
            subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
        )

    if not license_queries:
        return df

    # Handling license search
    tmp_result_df = []
    for query in license_queries:
        tmp_df = search_license(df, query)
        if len(tmp_df) > 0:
            tmp_result_df.append(tmp_df)

    if not tmp_result_df:
        # Nothing is found, return empty df
        return pd.DataFrame(columns=df.columns)

    df = pd.concat(tmp_result_df)
    df = df.drop_duplicates(
        subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
    )

    return df


def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
) -> pd.DataFrame:
    # Show all models
    if "Private or deleted" in hide_models:
        filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
    else:
        filtered_df = df

    if "Contains a merge/moerge" in hide_models:
        filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]

    if "MoE" in hide_models:
        filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]

    if "Flagged" in hide_models:
        filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


leaderboard_df = filter_models(
    df=leaderboard_df,
    type_query=[t.to_str(" : ") for t in ModelType],
    size_query=list(NUMERIC_INTERVALS.keys()),
    precision_query=[i.value.name for i in Precision],
    hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"],  # Deleted, merges, flagged, MoEs
)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder="πŸ” Search models or licenses (e.g., 'model_name; license: MIT') and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden and not c.dummy
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    with gr.Row():
                        hide_models = gr.CheckboxGroup(
                            label="Hide models",
                            choices=["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
                            value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
                            interactive=True,
                        )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_precision = gr.CheckboxGroup(
                        label="Precision",
                        choices=[i.value.name for i in Precision],
                        value=[i.value.name for i in Precision],
                        interactive=True,
                        elem_id="filter-columns-precision",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                    + shown_columns.value
                    + [AutoEvalColumn.fullname.name]
                ],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    hide_models,
                    search_bar,
                ],
                leaderboard_table,
            )

            # Define a hidden component that will trigger a reload only if a query parameter has been set
            hidden_search_bar = gr.Textbox(value="", visible=False)
            hidden_search_bar.change(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    hide_models,
                    search_bar,
                ],
                leaderboard_table,
            )
            # Check query parameter once at startup and update search bar + hidden component
            demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])

            for selector in [
                shown_columns,
                filter_columns_type,
                filter_columns_precision,
                filter_columns_size,
                hide_models,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        filter_columns_type,
                        filter_columns_precision,
                        filter_columns_size,
                        hide_models,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("πŸ“ˆ Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
            with gr.Row():
                with gr.Column():
                    plot_df = load_and_create_plots()
                    chart = create_metric_plot_obj(
                        plot_df,
                        [AutoEvalColumn.average.name],
                        title="Average of Top Scores and Human Baseline Over Time (from last update)",
                    )
                    gr.Plot(value=chart, min_width=500)
                with gr.Column():
                    plot_df = load_and_create_plots()
                    chart = create_metric_plot_obj(
                        plot_df,
                        BENCHMARK_COLS,
                        title="Top Scores and Human Baseline Over Time (from last update)",
                    )
                    gr.Plot(value=chart, min_width=500)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit ", elem_id="llm-benchmark-tab-table", id=5):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=ModelType.FT.to_str(" : "),
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            with gr.Column():
                with gr.Accordion(
                    f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                    open=False,
                ):
                    with gr.Row():
                        finished_eval_table = gr.components.Dataframe(
                            value=finished_eval_queue_df,
                            headers=EVAL_COLS,
                            datatype=EVAL_TYPES,
                            row_count=5,
                        )
                with gr.Accordion(
                    f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                    open=False,
                ):
                    with gr.Row():
                        running_eval_table = gr.components.Dataframe(
                            value=running_eval_queue_df,
                            headers=EVAL_COLS,
                            datatype=EVAL_TYPES,
                            row_count=5,
                        )

                with gr.Accordion(
                    f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                    open=False,
                ):
                    with gr.Row():
                        pending_eval_table = gr.components.Dataframe(
                            value=pending_eval_queue_df,
                            headers=EVAL_COLS,
                            datatype=EVAL_TYPES,
                            row_count=5,
                        )

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    private,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=3)  # restarted every 3h
scheduler.add_job(update_dynamic_files, "interval", hours=2)  # launched every 2 hour
scheduler.start()

demo.queue(default_concurrency_limit=40).launch()