Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from gradio_space_ci import enable_space_ci | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
FAQ_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
from src.scripts.update_all_request_files import update_dynamic_files | |
from src.tools.collections import update_collections | |
from src.tools.plots import ( | |
create_metric_plot_obj, | |
create_plot_df, | |
create_scores_df, | |
) | |
# Start ephemeral Spaces on PRs (see config in README.md) | |
#enable_space_ci() | |
def restart_space(): | |
""" | |
Restarts a Space instance specified by its repository ID. | |
This function is used to restart a Space instance within the Hugging Face platform. | |
It requires the repository ID and a valid API token for authentication. | |
Parameters as env variables | |
--------------------------- | |
repo_id : str | |
The ID of the repository associated with the Space instance to be restarted. | |
token : str | |
A valid API token with the necessary permissions to restart the Space. | |
Returns | |
------- | |
None | |
This function does not return any value. It simply restarts the specified Space instance. | |
Example | |
------- | |
>>> restart_space(repo_id="example_repo_id", token="example_token") | |
""" | |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
def init_space(): | |
""" | |
Initializes the Hugging Face Space environment. | |
This function initializes the Hugging Face Space environment by performing the following steps: | |
1. Downloads evaluation requests, dynamic information, and evaluation results. | |
2. Processes the raw data into a leaderboard DataFrame. | |
3. Updates collections with the original DataFrame. | |
4. Creates a plot DataFrame for visualization. | |
5. Retrieves evaluation queue DataFrames. | |
Returns | |
------- | |
tuple | |
A tuple containing the following elements: | |
- leaderboard_df : pandas.DataFrame | |
DataFrame containing the leaderboard data. | |
- original_df : pandas.DataFrame | |
Original DataFrame obtained from the evaluation results. | |
- plot_df : pandas.DataFrame | |
DataFrame suitable for creating plots. | |
- finished_eval_queue_df : pandas.DataFrame | |
DataFrame containing finished evaluation queue data. | |
- running_eval_queue_df : pandas.DataFrame | |
DataFrame containing running evaluation queue data. | |
- pending_eval_queue_df : pandas.DataFrame | |
DataFrame containing pending evaluation queue data. | |
Example | |
------- | |
>>> ( | |
... leaderboard_df, | |
... original_df, | |
... plot_df, | |
... finished_eval_queue_df, | |
... running_eval_queue_df, | |
... pending_eval_queue_df, | |
... ) = init_space() | |
""" | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(DYNAMIC_INFO_PATH) | |
snapshot_download( | |
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
raw_data, original_df = get_leaderboard_df( | |
results_path=EVAL_RESULTS_PATH, | |
requests_path=EVAL_REQUESTS_PATH, | |
dynamic_path=DYNAMIC_INFO_FILE_PATH, | |
cols=COLS, | |
benchmark_cols=BENCHMARK_COLS | |
) | |
update_collections(original_df.copy()) | |
leaderboard_df = original_df.copy() | |
plot_df = create_plot_df(create_scores_df(raw_data)) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
hide_models: list, | |
query: str, | |
): | |
""" | |
Updates a table DataFrame based on specified criteria. | |
This function filters the input DataFrame based on specified criteria and returns a new DataFrame with selected columns. | |
Parameters | |
---------- | |
hidden_df : pandas.DataFrame | |
The DataFrame to be filtered and updated. | |
columns : list | |
List of column names to be included in the updated DataFrame. | |
type_query : list | |
List of types to filter models. | |
precision_query : str | |
Precision value to filter models. | |
size_query : list | |
List of sizes to filter models. | |
hide_models : list | |
List of models to be hidden. | |
query : str | |
Query string to filter rows in the DataFrame. | |
Returns | |
------- | |
updated_df : pandas.DataFrame | |
A DataFrame containing filtered and updated data based on the specified criteria. | |
Example | |
------- | |
>>> updated_df = update_table( | |
... hidden_df=original_df, | |
... columns=["Model", "Type", "Precision"], | |
... type_query=["type1", "type2"], | |
... precision_query="high", | |
... size_query=["large"], | |
... hide_models=["model1", "model2"], | |
... query="column1 > 0 and column2 == 'value'", | |
... ) | |
""" | |
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
""" | |
Loads a query parameter from a request object. | |
It returns the query parameter value for the "search_bar" component and for a hidden component that triggers a reload only if the value has changed. | |
Parameters | |
---------- | |
request : gr.Request | |
The request object containing query parameters. | |
Returns | |
------- | |
tuple | |
A tuple containing two identical query parameter values: | |
- query_search_bar : str | |
The query parameter value for the "search_bar" component. | |
- query_hidden : str | |
The query parameter value for a hidden component that triggers a reload only if the value has changed. | |
Example | |
------- | |
>>> query_search_bar, query_hidden = load_query(request) | |
""" | |
query = request.query_params.get("query") or "" | |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
""" | |
Searches a DataFrame for rows containing a specified query. | |
This function filters the input DataFrame based on a specified query and returns a new DataFrame containing rows where the query matches any part of the specified column. | |
Parameters | |
---------- | |
df : pandas.DataFrame | |
The DataFrame to be searched. | |
query : str | |
The query string to search for within the DataFrame. | |
Returns | |
------- | |
filtered_df : pandas.DataFrame | |
A DataFrame containing rows where the query matches any part of the specified column. | |
Example | |
------- | |
>>> filtered_df = search_table(df=original_df, query="example_query") | |
""" | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
""" | |
Selects specified columns from a DataFrame. | |
This function selects specified columns from the input DataFrame and returns a new DataFrame containing only those columns. | |
Parameters | |
---------- | |
df : pandas.DataFrame | |
The DataFrame from which columns are to be selected. | |
columns : list | |
List of column names to be selected from the DataFrame. | |
Returns | |
------- | |
filtered_df : pandas.DataFrame | |
A DataFrame containing only the specified columns. | |
Example | |
------- | |
>>> filtered_df = select_columns(df=original_df, columns=["column1", "column2", "column3"]) | |
""" | |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
dummy_col = [AutoEvalColumn.dummy.name] | |
#AutoEvalColumn.model_type_symbol.name, | |
#AutoEvalColumn.model.name, | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame): | |
"""Added by Abishek""" | |
""" | |
Filters DataFrame rows based on specified query strings. | |
This function filters the input DataFrame based on specified query strings and returns a new DataFrame containing rows that match any of the queries. | |
Parameters | |
---------- | |
query : str | |
The query string containing one or more search queries separated by semicolons (;). | |
filtered_df : pandas.DataFrame | |
The DataFrame to be filtered based on the queries. | |
Returns | |
------- | |
filtered_df : pandas.DataFrame | |
A DataFrame containing rows that match any of the specified queries. | |
Example | |
------- | |
>>> filtered_df = filter_queries( | |
... query="query1; query2; query3", | |
... filtered_df=original_df, | |
... ) | |
""" | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list | |
) -> pd.DataFrame: | |
""" | |
Filters DataFrame rows based on specified criteria. | |
This function filters the input DataFrame based on specified criteria such as model type, size, precision, and models to hide. | |
Parameters | |
---------- | |
df : pandas.DataFrame | |
The DataFrame to be filtered. | |
type_query : list | |
List of tuples containing model types to include in the filtering. Each tuple consists of a model type abbreviation and its corresponding emoji. | |
size_query : list | |
List of size categories to include in the filtering. | |
precision_query : list | |
List of precision values to include in the filtering. | |
hide_models : list | |
List of model categories to hide from the DataFrame. | |
Returns | |
------- | |
filtered_df : pandas.DataFrame | |
A DataFrame containing rows that meet the specified filtering criteria. | |
Example | |
------- | |
>>> filtered_df = filter_models( | |
... df=original_df, | |
... type_query=[("Type1", "π₯"), ("Type2", "β")], | |
... size_query=["Large", "Medium"], | |
... precision_query=["High", "Medium"], | |
... hide_models=["Private or deleted", "Contains a merge/moerge", "MoE", "Flagged"], | |
... ) | |
""" | |
# Show all models | |
if "Private or deleted" in hide_models: | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
else: | |
filtered_df = df | |
if "Contains a merge/moerge" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] | |
if "MoE" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] | |
if "Flagged" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
leaderboard_df = filter_models( | |
df=leaderboard_df, | |
type_query=[t.to_str(" : ") for t in ModelType], | |
size_query=list(NUMERIC_INTERVALS.keys()), | |
precision_query=[i.value.name for i in Precision], | |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
hide_models = gr.CheckboxGroup( | |
label="Hide models", | |
choices = ["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"], | |
value=["Private or deleted", "Contains a merge/moerge", "Flagged"], | |
interactive=True | |
) | |
with gr.Column(min_width=320): | |
#with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
+ [AutoEvalColumn.dummy.name] | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
#column_widths=["2%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
hide_models, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Define a hidden component that will trigger a reload only if a query parameter has been set | |
hidden_search_bar = gr.Textbox(value="", visible=False) | |
hidden_search_bar.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
hide_models, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Check query parameter once at startup and update search bar + hidden component | |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
hide_models, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=4): | |
with gr.Row(): | |
with gr.Column(): | |
chart = create_metric_plot_obj( | |
plot_df, | |
[AutoEvalColumn.average.name], | |
title="Average of Top Scores and Human Baseline Over Time (from last update)", | |
) | |
gr.Plot(value=chart, min_width=500) | |
with gr.Column(): | |
chart = create_metric_plot_obj( | |
plot_df, | |
BENCHMARK_COLS, | |
title="Top Scores and Human Baseline Over Time (from last update)", | |
) | |
gr.Plot(value=chart, min_width=500) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=ModelType.FT.to_str(" : "), | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.value.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
private, | |
weight_type, | |
model_type, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h | |
scheduler.add_job(update_dynamic_files, "cron", minute=30) # launched every hour on the hour | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |