Spaces:
Sleeping
Sleeping
Commit
·
c53f091
1
Parent(s):
0f73e9a
update backend
Browse files- .gitignore +2 -1
- src/backend.py +13 -13
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
__pycache__/
|
2 |
-
.DS_Store
|
|
|
|
1 |
__pycache__/
|
2 |
+
.DS_Store
|
3 |
+
rl-trained_agents/
|
src/backend.py
CHANGED
@@ -5,6 +5,7 @@ import os
|
|
5 |
import random
|
6 |
import shutil
|
7 |
import sys
|
|
|
8 |
import zipfile
|
9 |
from pathlib import Path
|
10 |
from typing import Optional
|
@@ -217,8 +218,7 @@ def download_from_hub(
|
|
217 |
shutil.rmtree(log_path)
|
218 |
else:
|
219 |
raise ValueError(
|
220 |
-
f"The folder {log_path} already exists, use --force to overwrite it, "
|
221 |
-
"or choose '--exp-id 0' to create a new folder"
|
222 |
)
|
223 |
|
224 |
logger.info(f"Saving to {log_path}")
|
@@ -518,14 +518,9 @@ RESULTS_REPO = "open-rl-leaderboard/results_v2"
|
|
518 |
|
519 |
def _backend_routine():
|
520 |
# List only the text classification models
|
521 |
-
sb3_models = [
|
522 |
-
(model.modelId, model.sha) for model in API.list_models(filter=["reinforcement-learning", "stable-baselines3"])
|
523 |
-
]
|
524 |
logger.info(f"Found {len(sb3_models)} SB3 models")
|
525 |
-
|
526 |
-
dataset = load_dataset(
|
527 |
-
RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks"
|
528 |
-
)
|
529 |
evaluated_models = [("/".join([x["user_id"], x["model_id"]]), x["sha"]) for x in dataset]
|
530 |
pending_models = list(set(sb3_models) - set(evaluated_models))
|
531 |
logger.info(f"Found {len(pending_models)} pending models")
|
@@ -533,8 +528,11 @@ def _backend_routine():
|
|
533 |
if len(pending_models) == 0:
|
534 |
return None
|
535 |
|
|
|
|
|
|
|
536 |
# Select a random model
|
537 |
-
repo_id, sha =
|
538 |
user_id, model_id = repo_id.split("/")
|
539 |
row = {"model_id": model_id, "user_id": user_id, "sha": sha}
|
540 |
|
@@ -555,17 +553,18 @@ def _backend_routine():
|
|
555 |
row["episodic_returns"] = episodic_returns
|
556 |
except Exception as e:
|
557 |
logger.error(f"Error evaluating {model_id}: {e}")
|
|
|
558 |
row["status"] = "FAILED"
|
559 |
|
560 |
else:
|
561 |
logger.error(f"No environment found for {model_id}")
|
562 |
row["status"] = "FAILED"
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
) # Reload the dataset, in case it was updated
|
567 |
dataset = dataset.add_item(row)
|
568 |
dataset.push_to_hub(RESULTS_REPO, split="train")
|
|
|
569 |
|
570 |
|
571 |
def backend_routine():
|
@@ -573,6 +572,7 @@ def backend_routine():
|
|
573 |
_backend_routine()
|
574 |
except Exception as e:
|
575 |
logger.error(f"{e.__class__.__name__}: {str(e)}")
|
|
|
576 |
|
577 |
|
578 |
if __name__ == "__main__":
|
|
|
5 |
import random
|
6 |
import shutil
|
7 |
import sys
|
8 |
+
import time
|
9 |
import zipfile
|
10 |
from pathlib import Path
|
11 |
from typing import Optional
|
|
|
218 |
shutil.rmtree(log_path)
|
219 |
else:
|
220 |
raise ValueError(
|
221 |
+
f"The folder {log_path} already exists, use --force to overwrite it, " "or choose '--exp-id 0' to create a new folder"
|
|
|
222 |
)
|
223 |
|
224 |
logger.info(f"Saving to {log_path}")
|
|
|
518 |
|
519 |
def _backend_routine():
|
520 |
# List only the text classification models
|
521 |
+
sb3_models = [(model.modelId, model.sha) for model in API.list_models(filter=["reinforcement-learning", "stable-baselines3"])]
|
|
|
|
|
522 |
logger.info(f"Found {len(sb3_models)} SB3 models")
|
523 |
+
dataset = load_dataset(RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks")
|
|
|
|
|
|
|
524 |
evaluated_models = [("/".join([x["user_id"], x["model_id"]]), x["sha"]) for x in dataset]
|
525 |
pending_models = list(set(sb3_models) - set(evaluated_models))
|
526 |
logger.info(f"Found {len(pending_models)} pending models")
|
|
|
528 |
if len(pending_models) == 0:
|
529 |
return None
|
530 |
|
531 |
+
# Shuffle the dataset
|
532 |
+
random.shuffle(pending_models)
|
533 |
+
|
534 |
# Select a random model
|
535 |
+
repo_id, sha = pending_models.pop()
|
536 |
user_id, model_id = repo_id.split("/")
|
537 |
row = {"model_id": model_id, "user_id": user_id, "sha": sha}
|
538 |
|
|
|
553 |
row["episodic_returns"] = episodic_returns
|
554 |
except Exception as e:
|
555 |
logger.error(f"Error evaluating {model_id}: {e}")
|
556 |
+
logger.exception(e)
|
557 |
row["status"] = "FAILED"
|
558 |
|
559 |
else:
|
560 |
logger.error(f"No environment found for {model_id}")
|
561 |
row["status"] = "FAILED"
|
562 |
|
563 |
+
# load the last version of the dataset
|
564 |
+
dataset = load_dataset(RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks")
|
|
|
565 |
dataset = dataset.add_item(row)
|
566 |
dataset.push_to_hub(RESULTS_REPO, split="train")
|
567 |
+
time.sleep(60) # Sleep for 1 minute to avoid rate limiting
|
568 |
|
569 |
|
570 |
def backend_routine():
|
|
|
572 |
_backend_routine()
|
573 |
except Exception as e:
|
574 |
logger.error(f"{e.__class__.__name__}: {str(e)}")
|
575 |
+
logger.exception(e)
|
576 |
|
577 |
|
578 |
if __name__ == "__main__":
|